若f x分之x的3次方,在x 0處有定義還是有極限還是連續還是可導

2021-03-22 09:37:34 字數 5265 閱讀 4179

1樓:匿名使用者

在x=0處有極限。

y=x^(1/3)定義域為r

y'=(1/3)x^(-2/3)在x=0處無意義所以,y=x^(1/3)在x=0處連續但不可導。

當x>0時,f′(x)>0。

當x<0時,f′(x)<0。

根據導數的定義可知函式f(x)=|x|,在x=0處導數不存在

2樓:考蘭蕙暢晨

你是不是忙著複習呢,有段時間沒看了,忘的差不多了,做了一下,不知道是不是對的.

(1)(f(1+3△x)-f(a-△x))/(2△x)沒見過這樣的

是不是要改為

(f(a+3△x)-f(a-△x))/(2△x)→2(f(a-△x+4△x)-f(a-△x))/(4△x)→有點類似於

2(f(a+4△x)-f(a))/(4△x)=2f'(a)(2)(f(a+h^2)-f(a))>/h→h(f(a+h^2)-f(a))>/h^2=h*f'(a)不知道你想考哪所學校,祝你成功

3樓:生命的加速度

x=0處沒定義不連續不可導,但極限存在

f(x)在x=0處可導,則f'(x)在x=0處一定連續嗎

4樓:

考研數學上遇到類似的問題,現在明白了。

第一句:f(x)在x=0處可導,由導數定義知,f'+(0)=f'-(0),也就是在x=0處的左右導數相等。

第二句:f'(x)在x=0處連續,由連續的定義知,f'+(0)=f'-(0)=f'(0),相當於把導函式看成普通函式,在x=0處的左極限=右極限=這個點的函式值。

這兩者都是導函式的左右極限相等,但是前者不管導函式在x=0處存不存在,後者是導函式在x=0處一定存在且與左右極限相等。

通常用分段函式舉反例:

f(x)=x²sin(1/x) x≠0 ,

f(x)=0 x=0,

這樣,f(x)在x=0處連續,且f(x)在x=0處的導數為 f'(0)=0,而導函式f'(x)=2xsin(1/x)-cos(1/x) 中,f'+(0)與f'-(0)不存在,所以f(x)在x=0處可導。但是f'(x)在x=0處不連續。

綜上:f(x)在x=0處可導,f'(x)在x=0處不一定連續。

5樓:匿名使用者

不一定經典反例f(x)=x^2sin(1/x),定義f(0)=0。

f'(0)=0,

當x趨於0時

f'(x)=2xsin(1/x)-cos(1/x)極限不存在。

6樓:匿名使用者

大佬們,是不是這種意思,導函式連續要求,f'(0-)=f'(0+)=f'(0)(f'(0)也就是導函式在這點的定義),而函式在此點可導,只要求f'(0-)=f'(0+)即可,因此二者並無聯絡。

7樓:匿名使用者

對,對---------可導一定連續。

8樓:匿名使用者

是的,可導一定連續,連續不一定可導。

9樓:哈哈哈

f(x)可導,代表的是f(x)連續,如果要f'(x)連續,則應該有「f'(x)可導」這個條件,f'(x)可導即f(x)有二階導函式。

10樓:輕塵雨隨

這個問題我在考研的數學裡面看到了,也很疑惑,有個題目是這樣的當x≠0時f(x)=x^(4/3)sin(1/x),當x=0時,f(x)=0,答案說此f(x)在x=0處可導,然後另乙個一樣的題說此f'(x)在x=0處不連續,我就納悶兒了,f'(x)在x=0處可導不就是存在f'(0)嗎?而f'(0)存在的條件不就是左右極限f'(0-)=f'(0+)嗎?既然f'(0-)=f'(0+)了不就是f'(x)在x=0上連續了嗎?

樓上的人好像沒踩到你的點,樓主現在會了嗎?能給我解釋下下嗎??我超疑惑。。。

請問x開三次方的函式在 x=0處 不可導是怎麼回事呀

11樓:是你找到了我

x開三次方的函式在 x=0處不可導的,因為函式x開三次方的導函式為y『=1/3x^(-2/3),當x=0時,分母為0了,因此在x=0時,導數不存在,所以不可導。

函式可導的判別:

1、函式在定義域中一點可導需要一定的條件:函式在該點的左右導數存在且相等,不能證明這點導數存在。只有左右導數存在且相等,並且在該點連續,才能證明該點可導。

2、可導的函式一定連續;連續的函式不一定可導,不連續的函式一定不可導。

12樓:我是乙個麻瓜啊

原因如下:

(1)可導,即設y=f(x)是乙個單變數函式, 如果y在x=x0處左右導數分別存在且相等,則稱y在x=x[0]處可導。如果乙個函式在x0處可導,那麼它一定在x0處是連續函式。

(2)導函式為y『=1/3x^(-2/3),x=0時分母為0了,在x=0時,導數不存在,所以不可導。

13樓:你怕是傻哦

因為在這點處的函式影象沒有斜率。

函式在某點處有導數需要有幾何意義才可以,就是在這一點處的函式影象有斜率,例如y=x的3次方函式,開方之後再求導得到的是y=1那麼在x=0這一點就沒有斜率,所以也就是不可導。

擴充套件資料

若將一點擴充套件成函式f(x)在其定義域包含的某開區間i內每乙個點,那麼函式f(x)在開區間內可導,這時對於內每乙個確定的值,都對應著f(x)的乙個確定的導數,如此一來每乙個導數就構成了乙個新的函式,這個函式稱作原函式f(x)的導函式,記作:y'或者f′(x)。

函式f(x)在它的每乙個可導點x。處都對應著乙個唯一確定的數值——導數值f′(x),這個對應關係給出了乙個定義在f(x)全體可導點的集合上的新函式,稱為函式f(x)的導函式,記為f′(x)。

導函式的定義表示式為:

值得注意的是,導數是乙個數,是指函式f(x)在點x0處導函式的函式值。但通常也可以說導函式為導數,其區別僅在於乙個點還是連續的點。

14樓:匿名使用者

f(x)=x^}

試證:f(x)在x=0處不可導。

證:根據導數的定義,只需考察如下的極限:

\lim\limits_\frac

顯然,這個極限等於

\lim\limits_x^}=∞,不是有限實數,所以導數不存在。

15樓:

可以這樣想,y=x³在0處斜率為0,那麼他的反函式在x=0處斜率無窮大,所以不可導

也可以這樣算:導函式為y『=1/3x^(-2/3),x=0時分母為0了,所以不可導

f(x)=xsin1/x x不等於0 f(x)=0 x=o 在x=0處的連續性 可導性

16樓:陳

|lim| f(x)-f(0)|=lim| x sin(1/x)| <=lim| x |=0

所以f在x=0處連續。

根據可導的原始定義:

lim{x->0}[f(x)-f(0)]/[x-0]= lim{x->0}sin(1/x) (*)這個極限顯然不純在,因為你取兩列趨近於〇的點列:{x|x=1/kπ ,k屬於正整數}和{x|x=1/(2kπ+(π/2),k屬於正整數)得到不同的極限,所以極限(*)不存在 ,所以f在x=0處不可導。

若f(x)在x=0鄰域三階可導,則f(x)的三階導數在x=0處是否連續?

17樓:匿名使用者

不一定的,比如說x的5/2次方滿足條件,但三階導數在0不連續,因為無定義

如果函式f(x)在點x0處可導,則它在點x0處必定連續.該說法是否正確

18樓:答疑老度

這是正確的。

如果它在點x0處連續,則函式f(x)在點x0處必定可導。錯誤,比如f(x)=x的絕對值,在xo=0時不連續,

因為它的左右極限不相等。

導數的求導法則:

由基本函式的和、差、積、商或相互復合構成的函式的導函式則可以通過函式的求導法則來推導。基本的求導法則如下:

1、求導的線性:對函式的線性組合求導,等於先對其中每個部分求導後再取線性組合。

2、兩個函式的乘積的導函式:一導乘二+一乘二導。

3、兩個函式的商的導函式也是乙個分式:(子導乘母-子乘母導)除以母平方。

4、如果有復合函式,則用鏈式法則求導。

導數求導口訣:

1,對倒數(e為底時直接倒數,a為底時乘以1/lna)。

2,指不變(特別的,自然對數的指數函式完全不變,一般的指數函式須乘以lna)。

3,正變餘,餘變正。

4,切割方(切函式是相應割函式(切函式的倒數)的平方)。

5,割乘切,反分式。

6,常為零,冪降次。

19樓:冰洌

如果它在點x0處連續,則函式f(x)在點x0處必定可導。錯誤,比如f(x)=x的絕對值,在xo=0時不連續,因為它的左右極限不相等

高數f(x)在x=0處連續是什麼意思?

20樓:不是苦瓜是什麼

說明在這個點的左極限等於這個點的右極限等於這個點的函式值。

limx趨近0負fx等於limx趨近0正fx等於f(0)。

設y=f(x)是乙個單變數函式, 如果y在x=x[0]處存在導數y'=f'(x),則稱y在x=x[0]處可導。

如果乙個函式在x[0]處可導,那麼它一定在x[0]處是連續函式

如果乙個函式在x[0]處連續,那麼它在x[0]處不一定可導

函式可導定義:

(1)若f(x)在x0處連續,則當a趨向於0時, [f(x+a)-f(x)]/a存在極限, 則稱f(x)在x0處可導.

(2)若對於區間(a,b)上任意一點m,f(m)均可導,則稱f(x)在(a,b)上可導.

如果乙個函式的定義域為全體實數,即函式在上都有定義,函式在定義域中一點可導需要一定的條件是:函式在該點的左右兩側導數都存在且相等。這實際上是按照極限存在的乙個充要條件(極限存在,它的左右極限存在且相等)推導而來

一元函式中可導與可微等價,它們與可積無關。

多元函式可微必可導,而反之不成立。

即:在一元函式裡,可導是可微的充分必要條件;

在多元函式裡,可導是可微的必要條件,可微是可導的充分條件。

函式在點x=x0處有極限,連續,可導和微分的關係

21樓:從一而終

一元函式中

有極限不一定連續,連續必有極限

連續不一定可導,可導必連續

可導等價於可微

X的三次方在X0處有切線嗎,YX的13次方,在X0處有沒有切線,為什麼

y f x x3,在x 0處有切線,切線為y 0,即x軸。f x 3x2,在x 0處連續可導,且在點 0,0 上左右導數相等均為0,所以切線是y 0.y x的1 3次方,在x 0處有沒有切線,為什麼 當然有切線 這個函式在x 0處的切線就是y軸,即x 0這條直線。只是這條直線和x軸垂直,所有和x軸垂...

若x3的0次方22x4的1次方有意義,則x範圍

x 3 的0次方 2 2x 4 的 1次方有意義 x 3 0 x 3 2x 4 0 x 2 x 2且x 3的實數 若 x 3 的0次方 2 4x 8 的負2次方有意義,則x的取值範圍是 解 原式有意義,x 3 0 4x 8 0 解之得 x 3x 2 x 3且x 2.即 x 3 的0次方和 2 4x ...

若奇函式f x 在x 0處有定義,則f 0 的值是多少 急求 要過程 我在這先謝謝TA了

若奇函式f x 在x 0處有定義,則f 0 0 因為奇函式,f x f x 且在定義域中,x的值是關於0左右對稱,所以f 0 f 0 2f 0 0 f 0 0,奇函式f x 在x 0處有定義,這說明它的影象過原點。故有f 0 0。若奇函式f x 在x 0處有定義,則必有f 0 0是什麼意思 奇函式是...