1樓:匿名使用者
1、距離為5cm*6000000
=5cm*6*10^6
=3*10^7cm
=3*10^5m
=3*10^2km
=300km,故實際距離300km。
2、二分之一。原因:每次拋硬幣都是獨立事件3、周長增量=2πr-2πr=2π(r-r)=2π*(3-2)=2π cm=6.28 cm
2樓:杜博偉是個
(1)5cm:x=1:6000000
x=30000000
(2)1/2 因為質地均勻 隨意正反朝上的概率都是1/2(3)c=2πr c增加=2πr增加=2π(3-2)=2π
3樓:稻香
300千公尺
50%6.28
初中數學規律題(附答案和講解)
4樓:匿名使用者
初中數學規律題解題
基本方法
初中數學考試中,經常出現數列的找規律題,本文就此類題的解題方法進行探索:
一、基本方法——看增幅
(一)如增幅相等(此實為等差數列):對每個數和它的前乙個數進行比較,如增幅相等,則第n個數可以表示為:a+(n-1)b,其中a為數列的第一位數,b為增幅,(n-1)b為第一位數到第n位的總增幅。
然後再簡化代數式a+(n-1)b。
例:4、10、16、22、28……,求第n位數。
分析:第二位數起,每位數都比前一位數增加6,增幅相都是6,所以,第n位數是:4+(n-1)×6=6n-2
(二)如增幅不相等,但是,增幅以同等幅度增加(即增幅的增幅相等,也即增幅為等差數列)。如增幅分別為3、5、7、9,說明增幅以同等幅度增加。此種數列第n位的數也有一種通用求法。
基本思路是:1、求出數列的第n-1位到第n位的增幅;
2、求出第1位到第第n位的總增幅;
3、數列的第1位數加上總增幅即是第n位數。
舉例說明:2、5、10、17……,求第n位數。
分析:數列的增幅分別為:3、5、7,增幅以同等幅度增加。那麼,數列的第n-1位到第n位的增幅是:3+2×(n-2)=2n-1,總增幅為:
〔3+(2n-1)〕×(n-1)÷2=(n+1)×(n-1)=n2-1
所以,第n位數是:2+ n2-1= n2+1
此解法雖然較煩,但是此類題的通用解法,當然此題也可用其它技巧,或用分析觀察湊的方法求出,方法就簡單的多了。
(三)增幅不相等,但是,增幅同比增加,即增幅為等比數列,如:2、3、5、9,17增幅為1、2、4、8.
(三)增幅不相等,且增幅也不以同等幅度增加(即增幅的增幅也不相等)。此類題大概沒有通用解法,只用分析觀察的方法,但是,此類題包括第二類的題,如用分析觀察法,也有一些技巧。
二、基本技巧
(一)標出序列號:找規律的題目,通常按照一定的順序給出一系列量,要求我們根據這些已知的量找出一般規律。找出的規律,通常包序列號。
所以,把變數和序列號放在一起加以比較,就比較容易發現其中的奧秘。
例如,觀察下列各式數:0,3,8,15,24,……。試按此規律寫出的第100個數是 。
解答這一題,可以先找一般規律,然後使用這個規律,計算出第100個數。我們把有關的量放在一起加以比較:
給出的數:0,3,8,15,24,……。
序列號: 1,2,3, 4, 5,……。
容易發現,已知數的每一項,都等於它的序列號的平方減1。因此,第n項是n2-1,第100項是1002-1。
(二)公因式法:每位數分成最小公因式相乘,然後再找規律,看是不是與n2、n3,或2n、3n,或2n、3n有關。
例如:1,9,25,49,(),(),的第n為(2n-1)2
(三)看例題:
a: 2、9、28、65.....增幅是7、19、37....,增幅的增幅是12、18 答案與3有關且............即:n3+1
b:2、4、8、16.......增幅是2、4、8.. .....答案與2的乘方有關 即:2n
(四)有的可對每位數同時減去第一位數,成為第二位開始的新數列,然後用(一)、(二)、(三)技巧找出每位數與位置的關係。再在找出的規律上加上第一位數,恢復到原來。
例:2、5、10、17、26……,同時減去2後得到新數列:
0、3、8、15、24……,
序列號:1、2、3、4、5
分析觀察可得,新數列的第n項為:n2-1,所以題中數列的第n項為:(n2-1)+2=n2+1
(五)有的可對每位數同時加上,或乘以,或除以第一位數,成為新數列,然後,在再找出規律,並恢復到原來。
例 : 4,16,36,64,?,144,196,… ?(第一百個數)
同除以4後可得新數列:1、4、9、16…,很顯然是位置數的平方。
(六)同技巧(四)、(五)一樣,有的可對每位數同加、或減、或乘、或除同一數(一般為1、2、3)。當然,同時加、或減的可能性大一些,同時乘、或除的不太常見。
(七)觀察一下,能否把乙個數列的奇數字置與偶數字置分開成為兩個數列,再分別找規律。
三、基本步驟
1、 先看增幅是否相等,如相等,用基本方法(一)解題。
2、 如不相等,綜合運用技巧(一)、(二)、(三)找規律
3、 如不行,就運用技巧(四)、(五)、(六),變換成新數列,然後運用技巧(一)、(二)、(三)找出新數列的規律
4、 最後,如增幅以同等幅度增加,則用用基本方法(二)解題
四、練習題
例1:一道初中數學找規律題
0,3,8,15,24,••••••
2,5,10,17,26,•••••
0,6,16,30,48••••••
(1)第一組有什麼規律?
(2)第
二、三組分別跟第一組有什麼關係?
(3)取每組的第7個數,求這三個數的和?
2、觀察下面兩行數
2,4,8,16,32,64, ...(1)
5,7,11,19,35,67...(2)
根據你發現的規律,取每行第十個數,求得他們的和。(要求寫出最後的計算結果和詳細解題過程。)
3、白黑白黑黑白黑黑黑白黑黑黑黑白黑黑黑黑黑 排列的珠子,前2002個中有幾個是黑的?
4、 3^2-1^2=8×1 5^2-3^2=8×2 7^2-5^2=8×3 ……
用含有n的代數式表示規律
寫出兩個連續技術的平方差為888的等式
五、對於數表
1、先看行的規律,然後,以列為單位用數列找規律方法找規律
2、看看有沒有乙個數是上面兩數或下面兩數的和或差
100道初中數學計算題及答案
5樓:水瓶漠漠
=5*3√2-2*4√2+5√2
=√2(15-8+5)
=12√2
②√6-√3/2-√2/3
=√6-√6/2-√6/3
=√6/6
③(√45+√27)-(√4/3+√125)
=(3√5+3√3)-(2√3/3+5√5)
=-2√5+7√5/3
④(√4a-√50b)-2(√b/2+√9a)
=(2√a-5√2b)-2(√2b/2+3√a)
=-4√a-6√2b
⑤√4x*(√3x/2-√x/6)
=2√x(√6x/2-√6x/6)
=2√x*(√6x/3)
=2/3*|x|*√6
⑥(x√y-y√x)÷√xy
=x√y÷√xy-y√x÷√xy
=√x-√y
⑦(3√7+2√3)(2√3-3√7)
=(2√3)^2-(3√7)^2
=12-63
=-51
⑧(√32-3√3)(4√2+√27)
=(4√2-3√3)(4√2+3√3)
=(4√2)^2-(3√3)^2
=32-27
=5 ⑨(3√6-√4)?
=(3√6)^2-2*3√6*√4+(√4)^2
=54-12√6+4
=58-12√6
⑩(1+√2-√3)(1-√2+√3)
=[1+(√2-√3)][1-(√2-√3)]
=1-(√2-√3)^2
=1-(2+3+2√6)
=-4-2√6
(1)5√12×√18
=5*2√3*3√2
=30√6;
(2)-6√45×(-4√48)
=6*3√5*4*4√3
=288√15;
(3)√(12a)×√(3a) /4
=√(36a^2)/4
=6a/4
=3a/2.
5. x^2(y+z)^2-2xy(x-z)(y+z)+y^2(x-z)^2
=[x(y+z)-y(x-z)]^2
=(xz+yz)^2
=z^2(x+y)^2
6. 3(a+2)^2+28(a+2)-20
=[3(a+2)-2][(a+2)+10]
=(3a+4)(a+12)
7. (a+b)^2-(b-c)^2+a^2-c^2
=(a+b)^2-c^2+a^2-(b-c)^2
=(a+b+c)(a+b-c)+(a+b-c)(a-b+c)
=(a+b-c)(a+b+c+a-b+c)
=2(a+b-c)(a+c)
8. x(x+1)(x^2+x-1)-2
=(x^2+x)(x^2+x-1)-2
=(x^2+x)^2-(x^2+x)-2
=(x^2+x-2)(x^2+x+1)
=(x+2)(x-1)(x^2+x+1)
9. 9x^2(x-1)^2-3(x^2-x)-56
=9x^2(x-1)^2-3x(x-1)-56
=[3x(x-1)-8][3x(x-1)+7]
=(3x^2-3x-8)(3x^2-3x+7)
有理數練習
練習一(b級)
(一)計算題:
(1)23+(-73) (2)(-84)+(-49) (3)7+(-2.04) (4)4.23+(-7.
57) (5)(-7/3)+(-7/6) (6)9/4+(-3/2) (7)3.75+(2.25)+5/4 (8)-3.
75+(+5/4)+(-1.5)
5. x^2(y+z)^2-2xy(x-z)(y+z)+y^2(x-z)^2
=[x(y+z)-y(x-z)]^2
=(xz+yz)^2
=z^2(x+y)^2
6. 3(a+2)^2+28(a+2)-20
=[3(a+2)-2][(a+2)+10]
=(3a+4)(a+12)
7. (a+b)^2-(b-c)^2+a^2-c^2
=(a+b)^2-c^2+a^2-(b-c)^2
=(a+b+c)(a+b-c)+(a+b-c)(a-b+c)
=(a+b-c)(a+b+c+a-b+c)
=2(a+b-c)(a+c)
8. x(x+1)(x^2+x-1)-2
=(x^2+x)(x^2+x-1)-2
=(x^2+x)^2-(x^2+x)-2
=(x^2+x-2)(x^2+x+1)
=(x+2)(x-1)(x^2+x+1)
9. 9x^2(x-1)^2-3(x^2-x)-56
=9x^2(x-1)^2-3x(x-1)-56
=[3x(x-1)-8][3x(x-1)+7]
=(3x^2-3x-8)(3x^2-3x+7)
望採納~~
初中數學題,初中趣味數學題帶答案
oa是固定的,其實就是看p點到oa的距離什麼情況下能到最大值了,o是中心,那你連上oc的話,aoc三個點是一條直線上的,這時候過d點作ac垂線,並且反向延長和圓交於乙個點,這個點就是所求的p點,剩下的就好算了,自己算一下吧。我不會做 我沒上初中,別選我 題目呢?我來湊字數了 三角形底ao是固定的。就...
初中數學題,求答,初中數學題,求答案!!急
1 案一 先提價20 為 1 20 a 120 a,再降價20 後價錢為 120 a 1 20 96a 方案二 先降價20 為 1 20 a 80 a,再提價20 後價錢為80 a 1 20 96a 2 因為兩種降價後結果都一樣,所以商品銷售數量一樣時,兩種調價 分析 1 共航行路程 順水路程 逆水...
初中數學小題,初中數學題。。。
根號小於 所以負根號大於 因為在負數中數字越小整個值越大。根號15是介於3到4之間的數,所以a應該是應等於根號15 3。所以a b等於3 根號15 3 等於6 根號15。根號大於 所以 根號0.1小於。不等式兩邊乘以 1 大於號變成小於號!第二題根號15的整數部分是3 所以b 根號15 3.所以a ...