初中數學題。過程及答案,初中數學規律題附答案和講解

2021-03-04 08:54:13 字數 5696 閱讀 3147

1樓:匿名使用者

1、距離為5cm*6000000

=5cm*6*10^6

=3*10^7cm

=3*10^5m

=3*10^2km

=300km,故實際距離300km。

2、二分之一。原因:每次拋硬幣都是獨立事件3、周長增量=2πr-2πr=2π(r-r)=2π*(3-2)=2π cm=6.28 cm

2樓:杜博偉是個

(1)5cm:x=1:6000000

x=30000000

(2)1/2 因為質地均勻 隨意正反朝上的概率都是1/2(3)c=2πr c增加=2πr增加=2π(3-2)=2π

3樓:稻香

300千公尺

50%6.28

初中數學規律題(附答案和講解)

4樓:匿名使用者

初中數學規律題解題

基本方法

初中數學考試中,經常出現數列的找規律題,本文就此類題的解題方法進行探索:

一、基本方法——看增幅

(一)如增幅相等(此實為等差數列):對每個數和它的前乙個數進行比較,如增幅相等,則第n個數可以表示為:a+(n-1)b,其中a為數列的第一位數,b為增幅,(n-1)b為第一位數到第n位的總增幅。

然後再簡化代數式a+(n-1)b。

例:4、10、16、22、28……,求第n位數。

分析:第二位數起,每位數都比前一位數增加6,增幅相都是6,所以,第n位數是:4+(n-1)×6=6n-2

(二)如增幅不相等,但是,增幅以同等幅度增加(即增幅的增幅相等,也即增幅為等差數列)。如增幅分別為3、5、7、9,說明增幅以同等幅度增加。此種數列第n位的數也有一種通用求法。

基本思路是:1、求出數列的第n-1位到第n位的增幅;

2、求出第1位到第第n位的總增幅;

3、數列的第1位數加上總增幅即是第n位數。

舉例說明:2、5、10、17……,求第n位數。

分析:數列的增幅分別為:3、5、7,增幅以同等幅度增加。那麼,數列的第n-1位到第n位的增幅是:3+2×(n-2)=2n-1,總增幅為:

〔3+(2n-1)〕×(n-1)÷2=(n+1)×(n-1)=n2-1

所以,第n位數是:2+ n2-1= n2+1

此解法雖然較煩,但是此類題的通用解法,當然此題也可用其它技巧,或用分析觀察湊的方法求出,方法就簡單的多了。

(三)增幅不相等,但是,增幅同比增加,即增幅為等比數列,如:2、3、5、9,17增幅為1、2、4、8.

(三)增幅不相等,且增幅也不以同等幅度增加(即增幅的增幅也不相等)。此類題大概沒有通用解法,只用分析觀察的方法,但是,此類題包括第二類的題,如用分析觀察法,也有一些技巧。

二、基本技巧

(一)標出序列號:找規律的題目,通常按照一定的順序給出一系列量,要求我們根據這些已知的量找出一般規律。找出的規律,通常包序列號。

所以,把變數和序列號放在一起加以比較,就比較容易發現其中的奧秘。

例如,觀察下列各式數:0,3,8,15,24,……。試按此規律寫出的第100個數是 。

解答這一題,可以先找一般規律,然後使用這個規律,計算出第100個數。我們把有關的量放在一起加以比較:

給出的數:0,3,8,15,24,……。

序列號: 1,2,3, 4, 5,……。

容易發現,已知數的每一項,都等於它的序列號的平方減1。因此,第n項是n2-1,第100項是1002-1。

(二)公因式法:每位數分成最小公因式相乘,然後再找規律,看是不是與n2、n3,或2n、3n,或2n、3n有關。

例如:1,9,25,49,(),(),的第n為(2n-1)2

(三)看例題:

a: 2、9、28、65.....增幅是7、19、37....,增幅的增幅是12、18 答案與3有關且............即:n3+1

b:2、4、8、16.......增幅是2、4、8.. .....答案與2的乘方有關 即:2n

(四)有的可對每位數同時減去第一位數,成為第二位開始的新數列,然後用(一)、(二)、(三)技巧找出每位數與位置的關係。再在找出的規律上加上第一位數,恢復到原來。

例:2、5、10、17、26……,同時減去2後得到新數列:

0、3、8、15、24……,

序列號:1、2、3、4、5

分析觀察可得,新數列的第n項為:n2-1,所以題中數列的第n項為:(n2-1)+2=n2+1

(五)有的可對每位數同時加上,或乘以,或除以第一位數,成為新數列,然後,在再找出規律,並恢復到原來。

例 : 4,16,36,64,?,144,196,… ?(第一百個數)

同除以4後可得新數列:1、4、9、16…,很顯然是位置數的平方。

(六)同技巧(四)、(五)一樣,有的可對每位數同加、或減、或乘、或除同一數(一般為1、2、3)。當然,同時加、或減的可能性大一些,同時乘、或除的不太常見。

(七)觀察一下,能否把乙個數列的奇數字置與偶數字置分開成為兩個數列,再分別找規律。

三、基本步驟

1、 先看增幅是否相等,如相等,用基本方法(一)解題。

2、 如不相等,綜合運用技巧(一)、(二)、(三)找規律

3、 如不行,就運用技巧(四)、(五)、(六),變換成新數列,然後運用技巧(一)、(二)、(三)找出新數列的規律

4、 最後,如增幅以同等幅度增加,則用用基本方法(二)解題

四、練習題

例1:一道初中數學找規律題

0,3,8,15,24,••••••

2,5,10,17,26,•••••

0,6,16,30,48••••••

(1)第一組有什麼規律?

(2)第

二、三組分別跟第一組有什麼關係?

(3)取每組的第7個數,求這三個數的和?

2、觀察下面兩行數

2,4,8,16,32,64, ...(1)

5,7,11,19,35,67...(2)

根據你發現的規律,取每行第十個數,求得他們的和。(要求寫出最後的計算結果和詳細解題過程。)

3、白黑白黑黑白黑黑黑白黑黑黑黑白黑黑黑黑黑 排列的珠子,前2002個中有幾個是黑的?

4、 3^2-1^2=8×1 5^2-3^2=8×2 7^2-5^2=8×3 ……

用含有n的代數式表示規律

寫出兩個連續技術的平方差為888的等式

五、對於數表

1、先看行的規律,然後,以列為單位用數列找規律方法找規律

2、看看有沒有乙個數是上面兩數或下面兩數的和或差

100道初中數學計算題及答案

5樓:水瓶漠漠

=5*3√2-2*4√2+5√2

=√2(15-8+5)

=12√2

②√6-√3/2-√2/3

=√6-√6/2-√6/3

=√6/6

③(√45+√27)-(√4/3+√125)

=(3√5+3√3)-(2√3/3+5√5)

=-2√5+7√5/3

④(√4a-√50b)-2(√b/2+√9a)

=(2√a-5√2b)-2(√2b/2+3√a)

=-4√a-6√2b

⑤√4x*(√3x/2-√x/6)

=2√x(√6x/2-√6x/6)

=2√x*(√6x/3)

=2/3*|x|*√6

⑥(x√y-y√x)÷√xy

=x√y÷√xy-y√x÷√xy

=√x-√y

⑦(3√7+2√3)(2√3-3√7)

=(2√3)^2-(3√7)^2

=12-63

=-51

⑧(√32-3√3)(4√2+√27)

=(4√2-3√3)(4√2+3√3)

=(4√2)^2-(3√3)^2

=32-27

=5 ⑨(3√6-√4)?

=(3√6)^2-2*3√6*√4+(√4)^2

=54-12√6+4

=58-12√6

⑩(1+√2-√3)(1-√2+√3)

=[1+(√2-√3)][1-(√2-√3)]

=1-(√2-√3)^2

=1-(2+3+2√6)

=-4-2√6

(1)5√12×√18

=5*2√3*3√2

=30√6;

(2)-6√45×(-4√48)

=6*3√5*4*4√3

=288√15;

(3)√(12a)×√(3a) /4

=√(36a^2)/4

=6a/4

=3a/2.

5. x^2(y+z)^2-2xy(x-z)(y+z)+y^2(x-z)^2

=[x(y+z)-y(x-z)]^2

=(xz+yz)^2

=z^2(x+y)^2

6. 3(a+2)^2+28(a+2)-20

=[3(a+2)-2][(a+2)+10]

=(3a+4)(a+12)

7. (a+b)^2-(b-c)^2+a^2-c^2

=(a+b)^2-c^2+a^2-(b-c)^2

=(a+b+c)(a+b-c)+(a+b-c)(a-b+c)

=(a+b-c)(a+b+c+a-b+c)

=2(a+b-c)(a+c)

8. x(x+1)(x^2+x-1)-2

=(x^2+x)(x^2+x-1)-2

=(x^2+x)^2-(x^2+x)-2

=(x^2+x-2)(x^2+x+1)

=(x+2)(x-1)(x^2+x+1)

9. 9x^2(x-1)^2-3(x^2-x)-56

=9x^2(x-1)^2-3x(x-1)-56

=[3x(x-1)-8][3x(x-1)+7]

=(3x^2-3x-8)(3x^2-3x+7)

有理數練習

練習一(b級)

(一)計算題:

(1)23+(-73) (2)(-84)+(-49) (3)7+(-2.04) (4)4.23+(-7.

57) (5)(-7/3)+(-7/6) (6)9/4+(-3/2) (7)3.75+(2.25)+5/4 (8)-3.

75+(+5/4)+(-1.5)

5. x^2(y+z)^2-2xy(x-z)(y+z)+y^2(x-z)^2

=[x(y+z)-y(x-z)]^2

=(xz+yz)^2

=z^2(x+y)^2

6. 3(a+2)^2+28(a+2)-20

=[3(a+2)-2][(a+2)+10]

=(3a+4)(a+12)

7. (a+b)^2-(b-c)^2+a^2-c^2

=(a+b)^2-c^2+a^2-(b-c)^2

=(a+b+c)(a+b-c)+(a+b-c)(a-b+c)

=(a+b-c)(a+b+c+a-b+c)

=2(a+b-c)(a+c)

8. x(x+1)(x^2+x-1)-2

=(x^2+x)(x^2+x-1)-2

=(x^2+x)^2-(x^2+x)-2

=(x^2+x-2)(x^2+x+1)

=(x+2)(x-1)(x^2+x+1)

9. 9x^2(x-1)^2-3(x^2-x)-56

=9x^2(x-1)^2-3x(x-1)-56

=[3x(x-1)-8][3x(x-1)+7]

=(3x^2-3x-8)(3x^2-3x+7)

望採納~~

初中數學題,初中趣味數學題帶答案

oa是固定的,其實就是看p點到oa的距離什麼情況下能到最大值了,o是中心,那你連上oc的話,aoc三個點是一條直線上的,這時候過d點作ac垂線,並且反向延長和圓交於乙個點,這個點就是所求的p點,剩下的就好算了,自己算一下吧。我不會做 我沒上初中,別選我 題目呢?我來湊字數了 三角形底ao是固定的。就...

初中數學題,求答,初中數學題,求答案!!急

1 案一 先提價20 為 1 20 a 120 a,再降價20 後價錢為 120 a 1 20 96a 方案二 先降價20 為 1 20 a 80 a,再提價20 後價錢為80 a 1 20 96a 2 因為兩種降價後結果都一樣,所以商品銷售數量一樣時,兩種調價 分析 1 共航行路程 順水路程 逆水...

初中數學小題,初中數學題。。。

根號小於 所以負根號大於 因為在負數中數字越小整個值越大。根號15是介於3到4之間的數,所以a應該是應等於根號15 3。所以a b等於3 根號15 3 等於6 根號15。根號大於 所以 根號0.1小於。不等式兩邊乘以 1 大於號變成小於號!第二題根號15的整數部分是3 所以b 根號15 3.所以a ...