線性代數求逆矩陣例題12求a的逆矩陣請給出過程

2021-03-04 08:53:54 字數 4316 閱讀 4125

1樓:匿名使用者

用初等行變化求矩陣的逆矩陣,

即用行變換把矩陣(a,e)化成(e,b)的形式,那麼b就等於a的逆在這裡(a,e)=

1 2 3 1 0 0

2 2 1 0 1 0

3 4 3 0 0 1 r2-2r1,r3-3r1~1 2 3 1 0 0

0 -2 -5 -2 1 0

0 -2 -6 -3 0 1 r1+r2, r3-r2~1 0 -2 -1 1 0

0 -2 -5 -2 1 0

0 0 -1 -1 -1 1 r1-2r3,r2-5r3,r3*(-1)

~1 0 0 1 3 -2

0 -2 0 3 6 -5

0 0 1 1 1 -1 r2/(-2)~1 0 0 1 3 -2

0 1 0 -3/2 -3 5/2

0 0 1 1 1 -1

這樣就已經通過初等行變換把(a,e)~(e,a^-1)於是得到了原矩陣的逆矩陣就是

1 3 -2

-3/2 -3 5/2

1 1 -1

線性代數 這個第二題 我用逆矩陣法 用的列變化 ,為啥算出來和答案不一樣 線性代數 10

2樓:匿名使用者

a如果不滿秩答案不唯一,但是你的答案和標準答案應該可以互相線性表示

3樓:一公尺七的三爺

挨個挨個求,用啥逆矩陣啊

線性代數中的逆矩陣是怎麼求的?

4樓:喵喵喵

1、待定係數法

待定係數法顧名思義是一種求未知數的方法。將乙個多項式表示成另一種含有待定係數的新的形式,這樣就得到乙個恆等式。

然後根據恆等式的性質得出係數應滿足的方程或方程組,其後通過解方程或方程組便可求出待定的係數,或找出某些係數所滿足的關係式,這種解決問題的方法叫做待定係數法。

2、伴隨矩陣法

代數余子式求逆矩陣:如果矩陣a可逆,則

(|a|≠0,|a|為該矩陣對應的行列式的值)

3、初等變換法

方法是一般從左到右,一列一列處理先把第乙個比較簡單的(或小)的非零數交換到左上角(其實最後變換也行),用這個數把第一列其餘的數消成零處理完第一列後,第一行與第一列就不用管,再用同樣的方法處理第二列(不含第一行的數)

擴充套件資料

性質定理:

1、可逆矩陣一定是方陣。

2、如果矩陣a是可逆的,其逆矩陣是唯一的。

3、a的逆矩陣的逆矩陣還是a。記作(a-1)-1=a。

4、可逆矩陣a的轉置矩陣at也可逆,並且(at)-1=(a-1)t (轉置的逆等於逆的轉置)

5、若矩陣a可逆,則矩陣a滿足消去律。即ab=o(或ba=o),則b=o,ab=ac(或ba=ca),則b=c。

6、兩個可逆矩陣的乘積依然可逆。

7、矩陣可逆當且僅當它是滿秩矩陣。

5樓:風清響

-----------首先你要了解初等變換。------------------

初等變換就3種。

1. e12 就是吧12行(列)互換

2. e12(k)就是把第1行(列)的k倍加到第2(行)

3. e1(k)就是把第1行都乘上k

怎樣化行最簡:

這個其實很簡單,一步一步來不要話錯了就行了。無非就是要化成階梯形,然後再把階梯開頭的元素化為1,他頭頂上的元素化為0嘛

比如乙個4階矩陣。

首先你要把第一列,除了第乙個元素都化成0。那麼顯然,就是用第二行,第三行,第四行,去減第一行的k倍。假設。

第一行是(1,2,3,4)第二行第乙個元素是3,那麼你用第二行減去第一行的3倍的話,頭乙個元素不就肯定是0了嗎。然後假設第三行第乙個元素是4,那麼就是第三行減去第一行的4倍。同理第四行也是一樣的。

此時你只要關注第一列的元素就行了,全力把他們化為0。等到完成的時候,矩陣就變成

1 2 3 4

0 * * *

0 * * *

0 * * *

這樣就出來乙個階梯了對吧。

下面就是重複上面的工作。不過。不要在整個矩陣裡面進行了,因為如果你帶著第一行算的話,前面的0就肯定會被破壞了。

下面你就直接在* 的那個3階矩陣裡面進行。把原來的第二行 0 * * *當作第一行來化下面的,

完工之後就是

1 2 3 4

0 * * *

0 0 * *

0 0 * *

不就又出來乙個階梯嗎。

反覆這麼做最後就化成

1 2 3 4

0 * * *

0 0 * *

0 0 0 *

這個就是階梯形了吧。。

然後化最簡形就很簡單了。用初等變化的第3條。顯然我們可以吧最後一行的那個*除以他自己變成1

1 2 3 4

0 * * 4

0 0 * 4

0 0 0 1

然後他頭上的數,不論是多少都可以寫成0,因為不論是多少,總可以化為0吧,如果是2012,就減去第四行的2012倍嘛,反正第四行只有乙個1,前面都是0,怎麼減都不會影響到前面的行

這樣就化成了

1 2 3 0

0 * * 0

0 0 * 0

0 0 0 1

很顯然,重複上面的過程就可以了,現在只要把第三行的那個*,除以自己,變成1,然後他頭上的也就全可以化為0了

1 2 0 0

0 * 0 0

0 0 1 0

0 0 0 1

再來一次。就ok了嘛

比如你求a的逆矩陣,就是把a的右邊拼上乙個同階的單位陣變成(a|e)

1 2 3 1 0 0

4 5 6 0 1 0

7 8 9 0 0 1

然後把這個矩陣當作新的矩陣,然後就把左面那個部分化成單位陣(方法就是化最簡型嘛),當你把左面的部分化成單位陣之後,右邊就自動是a的逆矩陣了

(e|a逆)

就是這樣。嗯

----------------------------------

6樓:匿名使用者

線性代數是數學的乙個分支,它的研究物件是向量,向量空間(或稱線性空間),線性變換和有限維的線性方程組。向量空間是現代數學的乙個重要課題;因而,線性代數被廣泛地應用於抽象代數和泛函分析中;通過解析幾何,線性代數得以被具體表示。線性代數的理論已被泛化為運算元理論。

由於科學研究中的非線性模型通常可以被近似為線性模型,使得線性代數被廣泛地應用於自然科學和社會科學中。

中文名線性代數

外文名linear algebra

主要問題

線性關係問題

研究物件

向量、矩陣、行列式

應用抽象代數、泛函分析

定義與歷史

概念線性代數是代數學的乙個分支,主要處理線性關係問題。線性關係意即數學物件之間的關係是以一次形式來表達的。例如,在解析幾何裡,平面上直線的方程是二元一次方程;空間平面的方程是三元一次方程,而空間直線視為兩個平面相交,由兩個三元一次方程所組成的方程組來表示。

含有n個未知量的一次方程稱為線性方程。關於變數是一次的函式稱為線性函式。線性關係問題簡稱線性問題。

解線性方程組的問題是最簡單的線性問題。

所謂「線性」,指的就是如下的數學關係:

。其中,f叫線性運算元或線性對映。所謂「代數」,指的就是用符號代替元素和運算,也就是說:

我們不關心上面的x,y是實數還是函式,也不關心f是多項式還是微分,我們統一把他們都抽象成乙個記號,或是一類矩陣。合在一起,線性代數研究的就是:滿足線性關係

的線性運算元f都有哪幾類,以及他們分別都有什麼性質。[1]

歷史線性代數作為乙個獨立的分支在20世紀才形成,然而它的歷史卻非常久遠。「雞兔同籠」問題實際上就是乙個簡單的線性方程組求解的問題。最古老的線性問題是線性方程組的解法,在中國古代的數學著作《九章算術·方程》章中,已經作了比較完整的敘述,其中所述方法實質上相當於現代的對方程組的增廣矩陣的行施行初等變換,消去未知量的方法。

九章算術

由於費馬和笛卡兒的工作,現代意義的線性代數基本上出現於十七世紀。直到十八世紀末,線性代數的領域還只限於平面與空間。十九世紀上半葉才完成了到n維線性空間的過渡。

隨著研究線性方程組和變數的線性變換問題的深入,行列式和矩陣在18~19世紀期間先後產生,為處理線性問題提供了有力的工具,從而推動了線性代數的發展。向量概念的引入,形成了向量空間的概念。凡是線性問題都可以用向量空間的觀點加以討論。

因此,向量空間及其線性變換,以及與此

大學線性代數,求矩陣的n次方,線性代數,求乙個矩陣的n次方

數學歸納,或者利用特徵值,a p dp,an p dp p dp p dp p dnp,看得懂的話,試著寫一下,應該可以的 線性代數,求乙個矩陣的n次方 計算一下a 2 6a 所以a n 6 n 1a 線性代數,計算二階矩陣的n次方?a 3 9 1 3 a c11 c12 c21 c22 c11 a...

線性代數對角陣問題求解,線性代數問題,求矩陣的對角陣時為什麼要把特徵向量單位化呢?

實對稱矩陣是一定可以相似對角化的,在學習二次型的時候會經常將對稱矩陣對角化 線性代數問題,求矩陣的對角陣時為什麼要把特徵向量單位化呢?因為正交陣的每一列都肯定 是單位陣,所以需要單位化 如果不用正交陣作對角化過程,只用一般的可逆陣,就可以不單位化。線性變換的特徵向量是指在變換下方向不變,或者簡單地乘...

大學線性代數關於矩陣的冪,大學線性代數,求矩陣的n次方。

一般有以下幾種zhi方法 1.計算daoa 2,a 3 找規律,然後用歸納法證內明 2.若r a 1,則a 容 t,a n t n 1 a 注 t t tr t 3.分拆法 a b c,bc cb,用二項式公式適用於 b n 易計算,c的低次冪為零矩陣 c 2 或 c 3 0.4.用對角化 a p ...