具體數學vs離散數學vs組合數學什麼關係

2021-03-04 06:25:28 字數 5023 閱讀 9329

1樓:啊我的神經

1、具體數學這們課程就是講數學在計算機學中如何應用,在計算機學中如何用數學來解決問題,是數學和計算機學的結合。

2、離散數學(discrete mathematics)是研究離散量的結構及其相互關係的數學學科,是現代數學的乙個重要分支。

它在各學科領域,特別在電腦科學與技術領域有著廣泛的應用,同時離散數學也是計算機專業的許多專業課程,

如程式語言、資料結構、作業系統、編譯技術、人工智慧、資料庫、演算法設計與分析、理論電腦科學基礎等必不可少的先行課程。

通過離散數學的學習,不但可以掌握處理離散結構的描述工具和方法,為後續課程的學習創造條件,而且可以提高抽象思維和嚴格的邏輯推理能力,為將來參與創新性的研究和開發工作打下堅實的基礎。

3、組合數學(***binatorial mathematics),又稱為離散數學。

狹義的組合數學主要研究滿足一定條件的組態(也稱組合模型)的存在、計數以及構造等方面問題。組合數學主要內容有組合計數、組合設計、組合矩陣、組合優化等。有

時人們也把組合數學和圖論加在一起看作離散數學。組合數學是計算機出現以後迅速發展起來的一門數學分支。

電腦科學即演算法的科學,而計算機所處理的物件是離散的資料,所以離散物件的處理就成了電腦科學的核心,而研究離散物件的科學恰恰就是組合數學。

組合數學的發展改變了傳統數學中分析和代數佔統治地位的局面。

具體數學是與離散數學正好相對應的數學學科的分支。 具體數學和離散數學一樣也是電腦科學的不可分割的一部分,應用於程式設計和演算法式分析。

擴充套件資料

《具體數學:電腦科學基礎:第2版》是一本在大學中廣泛使用的經典數學教科書。

書中講解了許多電腦科學中用到的數學知識及技巧,教你如何把乙個實際問題一步步演化為數學模型,然後通過計算機解決它,特別著墨於演算法分析方面。

其主要內容涉及和式、整值函式、數論、二項式係數、特殊的數、生成函式、離散概率、漸近式等,都是程式設計所必備的知識.另外,本書包括了六大類500 多道習題,並給出了所有習題的解答,有助讀者加深書中內容的理解。

《具體數學:電腦科學基礎:第2版》面向從事電腦科學、計算數學、計算技術諸方面工作的人員,以及高等院校相關專業的師生。

離散數學是傳統的邏輯學,集合論(包括函式),數論基礎,演算法設計,組合分析,離散概率,關係理論,圖論與樹,抽象代數(包括代數系統,群、環、域等),布林代數,計算模型(語言與自動機)等匯集起來的一門綜合學科。

離散數學的應用遍及現代科學技術的諸多領域。

離散數學也可以說是電腦科學的基礎核心學科,在離散數學中的有乙個著名的典型例子-四色定理又稱四色猜想,

這是世界近代三大數學難題之一,它是在2023年,由英國的一名繪圖員弗南西斯·格思裡提出的,他在進行地圖著色時,發現了乙個現象,"每幅地圖都可以僅用四種顏色著色,

並且共同邊界的國家都可以被著上不同的顏色"。那麼這能否從數學上進行證明呢?

離散數學可以看成是構築在數學和電腦科學之間的橋梁,因為離散數學既離不開集合論、圖論等數學知識,又和電腦科學中的資料庫理論、資料結構等相關,它可以引導人們進入電腦科學的思維領域,促進了電腦科學的發展。

學完離散數學還用學組合數學和具體數學嗎

2樓:小樂笑了

都需要學的。

離散數學中,有許多組合類問題,尤其是圖論等內容。

具體數學中,包含一些離散數學的內容,但是跟計算機解決實際問題更密切相關,因此更需要學的。

組合數學和離散數學有什麼區別??

3樓:唯我獨壞

組合數學(***binatorial mathematics)

廣義有人認為廣義的組合數學就是離散數學,也有人認為離散數學是狹義的組合數學和圖論、代數結構、數理邏輯等的總稱。但這只是不同學者在叫法上的區別。總之,組合數學是一門研究離散物件的科學。

隨著電腦科學的日益發展,組合數學的重要性也日漸凸顯,因為電腦科學的核心內容是使用演算法處理離散資料。

狹義狹義的組合數學主要研究滿足一定條件的組態(也稱組合模型)的存在、計數以及構造等方面的問題。組合數學的主要內容有組合計數、組合設計、組合矩陣、組合優化等。

離散數學(discrete mathematics)是數學的幾個分支的總稱,以研究離散量的結構和相互間的關係為主要目標,其研究物件一般地是有限個或可數無窮個元素;因此它充分描述了電腦科學離散性的特點。

內容包含:數理邏輯、集合論、代數結構、圖論、組合學、數論等。

由於數字電子計算機是乙個離散結構,它只能處理離散的或離散化了的數量關係, 因此,無論電腦科學本身,還是與電腦科學及其應用密切相關的現代科學研究領域,都面臨著如何對離散結構建立相應的數學模型;又如何將已用連續數量關係建立起來的數學模型離散化,從而可由計算機加以處理。

離散數學課程主要介紹離散數學的各個分支的基本概念、基本理論和基本方法。這些概念、理論以及方法大量地應用在數位電路、編譯原理、資料結構、作業系統、資料庫系統、演算法的分析與設計、人工智慧、計算機網路等專業課程中;同時,該課程所提供的訓練十分有益於學生概括抽象能力、邏輯思維能力、歸納構造能力的提高,十分有益於學生嚴謹、完整、規範的科學態度的培養。

離散數學通常研究的領域包括:數理邏輯、集合論、關係論、函式論、代數系統與圖論。

離散數學、組合數學、圖論的關係是什麼?

4樓:暴走少女

圖論是組合數學的乙個分支,而離散數學是專為計算機專業編的數學書,和組合數學有部分知識交叉。

離散數學(discrete mathematics)是研究離散量的結構及其相互關係的數學學科,是現代數學的乙個重要分支。離散的含義是指不同的連線在一起的元素,主要是研究基於離散量的結構和相互間的關係,其物件一般是有限個或可數個元素。

組合數學(***binatorial mathematics),又稱為離散數學。廣義的組合數學就是離散數學,狹義的組合數學是離散數學除圖論、代數結構、數理邏輯等的部分。但這只是不同學者在叫法上的區別。

總之,組合數學是一門研究離散物件的科學。

圖論〔graph theory〕是數學的乙個分支。它以圖為研究物件。圖論中的圖是由若干給定的點及連線兩點的線所構成的圖形,這種圖形通常用來描述某些事物之間的某種特定關係,用點代表事物,用連線兩點的線表示相應兩個事物間具有這種關係。

擴充套件資料:

一、離散數學學科內容

1、集合論部分:集合及其運算、二元關係與函式、自然數及自然數集、集合的基數。

2、圖論部分:圖的基本概念、尤拉圖與哈密頓圖、樹、圖的矩陣表示、平面圖、圖著色、支配集、覆蓋集、獨立集與匹配、帶權圖及其應用。

3、代數結構部分:代數系統的基本概念、半群與獨異點、群、環與域、格與布林代數。

4、組合數學部分:組合存在性定理、基本的計數公式、組合計數方法、組合計數定理。

5、數理邏輯部分:命題邏輯、一階謂詞演算、消解原理。

二、圖論的起源

眾所周知,圖論起源於乙個非常經典的問題——柯尼斯堡(konigsberg)問題。

2023年,瑞典數學家尤拉( leornhard euler)解決了柯尼斯堡問題。由此圖論誕生。尤拉也成為圖論的創始人。

2023年,英國數學家漢密爾頓發明了一種遊戲:用乙個規則的實心十二面體,它的20個頂點標出世界著名的20個城市,要求遊戲者找一條沿著各邊通過每個頂點剛好一次的閉迴路,即「繞行世界」。用圖論的語言來說,遊戲的目的是在十二面體的圖中找出乙個生成圈。

這個生成圈後來被稱為漢密爾頓迴路。這個問題後來就叫做漢密爾頓問題。由於運籌學、電腦科學和編碼理論中的很多問題都可以化為漢密爾頓問題,從而引起廣泛的注意和研究。

5樓:匿名使用者

圖論是離散數學研究的眾多物件之一.離散數學用「圖」的方法研究圖論,但圖論是一種理論,其他學科也有自己的研究方法(如資料結構也有圖論部分).無論如何,各學科都保留了圖論的基本概念(有向與無向、點集、邊集、迴路、最短路徑等)與演算法理論(dijkstra、最小生成樹、dfs等)

組合數學,又稱為離散數學。

廣義的組合數學就是離散數學,狹義的組合數學是圖論、代數結構、數理邏輯等的總稱。但這只是不同學者在叫法上的區別。總之,組合數學是一門研究離散物件的科學。

隨著電腦科學的日益發展,組合數學的重要性也日漸凸顯,因為電腦科學的核心內容是使用演算法處理離散資料。

6樓:心寂空空

劃分問題。

按照耿素雲 屈婉玲 等著的離散數學教程看。

離散數學包括:集合論。圖論 。代數結構。組合數學。數理邏輯。這五大板塊。

但是每個板塊都沒有深入**下去。也就是說每個板塊都可以自成一書。

就像大學以前學的幾何分為立體幾何和平面幾何一樣。

7樓:櫻析光

三者關係:圖論是組合數學的乙個分支,而離散數學是專為計算機專業編的數學書,和組合數學有部分知識交叉

離散數學 組合數學有什麼區別?

8樓:永丶不悔頭

1、意義不同:

廣義的組合

數學就是離散數學,離散數學是狹義的組合數學和圖論、代數結構、數理邏輯等的總稱。組合數學是一門研究離散物件的科學,狹義的組合數學主要研究滿足一定條件的組態也稱組合模型的存在、計數以及構造等方面的問題。

2、內容不同:

離散數學是數學的幾個分支的總稱,以研究離散量的結構和相互間的關係為主要目標,內容包含數理邏輯、集合論、代數結構、圖論、組合學、數論等。

組合數學主要研究滿足一定條件的組態也稱組合模型的存在、計數以及構造等方面的問題。 組合數學的主要內容有組合計數、組合設計、組合矩陣、組合優化等。

9樓:匿名使用者

組合數學(***binatorial mathematics),又稱為離散數學。狹義的組合數學主要研究滿足一定條件的組態(也稱組合模型)的存在、計數以及構造等方面問題。組合數學主要內容有組合計數、組合設計、組合矩陣、組合優化等。

有時人們也把組合數學和圖論加在一起看作離散數學。組合數學是計算機出現以後迅速發展起來的一門數學分支。電腦科學即演算法的科學,而計算機所處理的物件是離散的資料,所以離散物件的處理就成了電腦科學的核心,而研究離散物件的科學恰恰就是組合數學。

組合數學的發展改變了傳統數學中分析和代數佔統治地位的局面。

離散數學 求解,離散數學求解

第1題,用定義證明,也可以用包含關係的傳遞性,來證明。a c則a b c a b bb d則a b d 由 得到,a b c d,則。a b c b b d,則。c b c d 由 得到,a b c d 2不正確,可以舉反例。a b c d 顯然,a c,b d 但a b a b b a c d c...

離散數學求證函式是否為雙射函式,離散數學,假設函式f是集合A到A的雙射函式,則f復合f等於什麼,

滿射也好證明 a b c 則a a b c 從而b b,c c 因此 a b c 也就是說,對任意a b c 中的元素,都是可以找到原像的,因此是滿射。離散數學,假設函式f是集合a到a的雙射函式,則f復合f等於什麼,用反證法。設dug f是集合 zhia到a上的雙射假dao設g不是滿射,則r g f...

離散數學證明蘊含式,離散數學蘊含式證明,第二題a問題,求解!

1 p p 附加前提 2 p q p 附加前提 3 p q r p 4 q r t 1 3 i 5 p r t 2 4 i 6 r t 1 5 i 7 p r cp 8 p q p r cp 第一次答題 求鼓勵 離散數學蘊含式證明,第二題a問題,求解!10 可以用邏輯恆等式來證明 p q p q p...