拋物線求導後的斜率和切線的斜率是一樣的嗎

2021-03-04 06:19:15 字數 3046 閱讀 9544

1樓:匿名使用者

拋物線的導數就是斜率。

平面內,到定點與定直線的距離相等的點的軌跡叫做拋物線。其中定點叫拋物線的焦點,定直線叫拋物線的準線。

拋物線是指平面內到乙個定點f(焦點)和一條定直線l(準線)距離相等的點的軌跡。它有許多表示方法,例如引數表示,標準方程表示等等。 它在幾何光學和力學中有重要的用處。

拋物線也是圓錐曲線的一種,即圓錐面與平行於某條母線的平面相截而得的曲線。拋物線在合適的座標變換下,也可看成二次函式影象。

在數學中,拋物線是乙個平面曲線,它是映象對稱的,並且當定向大致為u形(如果不同的方向,它仍然是拋物線)。它適用於幾個表面上不同的數學描述中的任何乙個,這些描述都可以被證明是完全相同的曲線。

拋物線的乙個描述涉及乙個點(焦點)和一條線(準線)。焦點並不在於準則。拋物線是該平面中與陣線和焦點等距的點的軌跡。

拋物線的另乙個描述是作為圓錐截面,由右圓錐形表面和平行於與錐形表面相切的另一平面的平面的交點形成。第三個描述是代數。拋物線是例如二次函式的影象。

垂直於準線並通過焦點的線(即通過中間分解拋物線的線)被稱為「對稱軸」。與對稱軸相交的拋物線上的點被稱為「頂點」,並且是拋物線最鋒利彎曲的點。沿著對稱軸測量的頂點和焦點之間的距離是「焦距」。

「直腸直腸」是拋物線的平行線,並通過焦點。拋物線可以向上,向下,向左,向右或向另乙個任意方向開啟。任何拋物線都可以重新定位並重新定位,以適應任何其他拋物線 - 也就是說,所有拋物線都是幾何相似的。

拋物線具有這樣的性質,如果它們由反射光的材料製成,則平行於拋物線的對稱軸行進並撞擊其凹面的光被反射到其焦點,而不管拋物線在**發生反射。相反,從焦點處的點源產生的光被反射成平行(「準直」)光束,使拋物線平行於對稱軸。聲音和其他形式的能量也會產生相同的效果。

這種反射性質是拋物線的許多實際應用的基礎。

拋物線具有許多重要的應用,從拋物面天線或拋物線麥克風到汽車前照燈反射器到設計彈道飛彈。它們經常用於物理,工程和許多其他領域。

希望我能幫助你解疑釋惑。

導數和斜率是一樣的嗎

2樓:晚夏落飛霜

不一樣。

導數又叫導函式,是乙個函式,是原來的函式的導函式。導數的幾何意義就是斜率,求函式在x0處的切線斜率,就是先求出該函式的導數,然後將x0的值代入導數,得到的就是該點的切線斜率。導數是基於斜率運算的乙個極限結果,可以描述圖形的連續性,具有圖形上單點的描述特徵。

也就是說,導函式每一點的函式值都是對應於原函式的對應點的切線斜率。而斜率的意義是比較廣泛的, 比如拋物線上任意兩點連線可以求出乙個斜率,但導數不可以這樣做。

導數與微分的區別與聯絡

1、起源不同:導數起源是函式值隨自變數增量的變化率,即△y/△x的極限。微分起源於微量分析,如△y可分解成a△x與o(ox)兩部分之和,其線性主部稱微分。

當△x很小時,△y的數值大小主要由微分a△x決定,而o(ox)對其大小的影響是很小的。

2、幾何意義不同:導數的值是該點處切線的斜率,微分的值是沿切線方向上縱座標的增量,而△y則是沿曲線方向上縱座標的增量。

3、聯絡:導數是微分之商(微商) y』=dy/dx, 微分dy=f' (x)dx。對一元函式而言,可導必可微,可微必可導。

3樓:匿名使用者

導數又叫導函式,是乙個函式,是原來的函式的導函式。

導數的幾何意義就是斜率,求函式在x0處的切線斜率,就是先把函式的導數求出來,然後把x0代入導數裡面,得到的就是該點的切線斜率

也就是說 導函式每一點的函式值都是對應於原函式的對應點的切線斜率希望對你有幫助,望採納!

急!!拋物線上一點的切線與法線斜率有什麼關係???? 10

4樓:匿名使用者

你是問切線這個東西和法線斜率的關係,還是問切線的斜率和法線斜率的關係?

我現在只能說,切線斜率等於該點的導數,法線斜率乘以切線斜率等於-1(如果兩斜率均存在且非0)。

5樓:匿名使用者

法線指垂直於曲線上一點的切線的直線.

這是法線的定義,不用推導

6樓:匿名使用者

互為負倒數也就是說法線的斜率是切線斜率的負倒數

切線方程,斜率,導數的關係?

7樓:匿名使用者

假設乙個曲線的切線方程存在,

那麼這個曲線在切點處的導數值就是這個切線的斜率

8樓:匿名使用者

你設乙個拋物線,

假如就是y=3xx+2x+1吧,在上面取一點(1,6)

過(1,6)作一條切線,這條切線你應該會算吧,用最常用的判別式法,令δ=0就能求出

y=8x-2 這是(1,6)這點的切線方程

接下來就是重點:

你對切線方程求導,得y=8,說明切線斜率為8,對吧

你對曲線方程求導,得y=6x+2,得到了條直線方程。這能說明什麼呢?

這說明曲線(就是這條拋物線)的斜率是隨x的不同而不同的。如果你把x=1帶入到曲線的導函式y=6x+2中,你算算,得8沒錯吧?

這說明,當x=1時,拋物線這點的切線斜率為8。

也就是說,乙個方程的導函式,表明,曲線不同x取值情況下,斜線的斜率是多少。

你畫圖也能看出來。

y=3xx+2x+1,當x從-∞到+∞過程中,他的切線斜率是一直在增大的

在對稱軸左側,斜率為負,在對稱軸上斜率為0,在對稱軸右側,斜率為正。

這與我們求出的拋物線的導函式y=6x+2是相符合的。^_^

9樓:在路上

在切線方程中,斜率和導數可通過對切線方程求導得出舉的例子

設切線方程為y=kx+b

則斜率和導數都等於k

10樓:匿名使用者

首先求出原方程的導數方程(1),然後,把需求切線的那一點的座標x代入(1)即得的 就是k 現用點斜式代入切點的座標就ok

就是想要這個意思吧

11樓:鄢問碩如南

y'就是切線方程的斜率

y'=4-3x^2

=4-3*1

=1y=1(x+1)-3=x-2

此處,tanx表示的是切線的斜率

tanx 1 解得,x 3 4 1 tanx 0 3 4 x 注意 x的取值範圍為0 切線的斜率怎麼求 k y1 y2 x1 x2 斜率表示一條直線 或曲線的切線 關於 橫 座標軸傾斜程度的量。它通常用直線 或曲線的切線 與 橫 座標軸夾角的正切,或兩點的縱座標之差與橫座標之差的比來表示。直線對x ...

1 已知拋物線經過( 2,01,02,8) 則該拋物線的解析式是

1.解 設拋物線為y ax bx c 0 2 a 2b c 4a 2b c0 a b c 8 2 a 2b c 4a 2b c a 2,b 2,c 4 拋物線為y 2x 2x 4 2.解 設拋物線為y ax bx c 11 c 0 a b c 17 2 a 2b c 4a 2b c a 3,b 8,...

拋物線的方程式是什麼,拋物線的引數方程是什麼

y ax bx c a 0 當y 0時,即 ax bx c 0 a 0 就是拋物線方程式。拋物線的引數方程是什麼 拋物線的引數方程常用如下 拋物線y 2 2px p 0 的引數方程為 x 2pt 2 y 2pt其中引數p的幾何意義,是拋物線的焦點f p 2,0 到準線x p 2的距離,稱為拋物線的焦...