1樓:匿名使用者
一定垂直,因為平行於平面的直線一定平行於平面內的某條直線,而法向量垂直於平面內任何直線
2樓:溫未鹹曼青
是的,這是很基礎的,法向量就是垂直於乙個平面的向量,你可以把它看作一根直線,一根直線垂直於乙個平面,他當然和這個平面裡任何一條直線垂直了,這是線面垂直定理。希望對你有幫助
3樓:匿名使用者
是的、可以通過平面平行和垂直的定理來證明
空間向量,如果一條直線與一平面平行,那麼直線的方向向量與平面的法向量有什麼關係??垂直呢?
4樓:demon陌
空間向量,如果一條直線與一平面平行,那麼直線的方向向量與平面的法向量關係:直線方向向量s與平面法向量n的數量積為0。即:
s•n=0。直線與平面平行時,直線方向向量s與平面法向量n是垂直的關係。
空間向量,如果一條直線與一平面垂直,那麼直線的方向向量與平面的法向量關係:直線方向向量s與平面法向量n是平行的。即:s=λn,其中λ是常數。
兩個空間向量a,b向量(b向量不等於0),a∥b的充要條件是存在唯一的實數λ,使a=λb。
如果兩個向量a,b不共線,則向量c與向量a,b共面的充要條件是:存在唯一的一對實數x,y,使c=ax+by。
5樓:匿名使用者
如果一條直線與一平面平行,那麼直線的方向向量與平面的法向量垂直
如果一條直線與一平面垂直,那麼直線的方向向量與平面的法向量平行
6樓:匿名使用者
直線與一平面平行,那麼直線的方向向量與平面的法向量垂直。垂直時兩向量平行(通常是相等)。
7樓:沐雲逸
法向量垂直於平面上任意一條直線
又因為平面外的一條直線垂直於法向量
所以 在平面上始終可以找到一條與該直線平行的直線所以該直線平行與平面
8樓:紅魔的木景然
垂直啊。。。直線的方向向量不就可以用平面內的一條方向來確定嗎,而平面的法向向量垂直於平面
9樓:匿名使用者
第乙個是垂直,第二個是平行
直線的方向向量和平面法向量平行,難道不是直線和平面垂直嗎
10樓:
一定垂直,因為平行於平面的直線一定平行於平面內的某條直線,而法向量垂直於平面內任何直線
平面的法向量與該平面內所有向量都是垂直的。這句話是錯的吧,零向量不是和它平行嗎???
11樓:匿名使用者
兩向量垂直的定義是:a*b=0,
對於零向量,這條件始終成立
平面的法向量與這個平面垂直,對嗎?平面的法向量定義是
第乙個是對的,第二個是需要相交的,不能平行或重合。乙個平面的法向量一定垂直於平行與這個面的直線嗎 一定垂直,因為平行於平面的直線一定平行於平面內的某條直線,而法向量垂直於平面內任何直線 是的,這是很基礎的,法向量就是垂直於乙個平面的向量,你可以把它看作一根直線,一根直線垂直於乙個平面,他當然和這個平...
垂直於同一條平面的兩條直線平行怎麼證
過平面一點有且只有一條直線與平面垂直,假設垂直於同一平面兩直線不平行,則將兩直線平移是垂足重合,便有過一點有兩條直線垂直於同一平面,矛盾,所以兩直線平行 一條直線a垂直於乙個平面a,那麼這條直線所在平面b也一定垂直於這個平面a,因為另一條直線b也垂直於這個平面a,所以b平行於平面b,因為直線a屬於平...
一條直線的平行向量與平面的法向量叉乘等於零向量是直線與平
充要條件。叉乘為 0 說明兩個向量平行,因此直線垂直於平面 反之,直線與平面垂直,則兩個向量平行,因此叉乘為 0 第乙個選擇題中,答案是垂直。我能否可以用兩個直線的方向向量叉乘,然後把結果和平面法向量叉乘等於0判 第一次叉乘得出直線方向向量,這是對的,不知道你是否求錯了,我的結果是 28,14,7 ...