limxxsin1x求解,麻煩詳細解釋下如

2021-03-04 01:52:46 字數 6172 閱讀 3256

1樓:匿名使用者

簡單的做法把x放到分母,這時是sin(1/x)除以1/x,根據洛比達法則,答案為1

大一高等數學求解 圖中為什麼lim1\xsin1\x不存在啊

2樓:匿名使用者

x→0+,

1/x→+∞

x→0-

1/x→-∞

1/x→∞

sin(1/x)∈[-1,1],值不確定,**整體極限肯定也不存在

limx→0(xsin1/x)的值,大神解答。

3樓:drar_迪麗熱巴

x→0時,limx是無窮小,sin1/x為有界量.

因此兩者之積是無窮小量=0.

有界量乘以無窮小量仍是無窮小.

無窮小量是數學分析中的乙個概念,用以嚴格地定義諸如「最終會消失的量」、「絕對值比任何正數都要小的量」等非正式描述。

無窮小量是數學分析中的乙個概念,在經典的微積分或數學分析中,無窮小量通常它以函式、序列等形式出現。無窮小量即以數0為極限的變數,無限接近於0。

確切地說,當自變數x無限接近x0(或x的絕對值無限增大)時,函式值f(x)與0無限接近,即f(x)→0(或f(x)=0),則稱f(x)為當x→x0(或x→∞)時的無窮小量。特別要指出的是,切不可把很小的數與無窮小量混為一談。

4樓:我是乙個麻瓜啊

0。limx→0(xsin1/x),limx→0(x)乘以limx→0(sin1/x),sin1/x是正弦函式,是乙個有值域的有界函式,0乘以有界,都為0。

有界函式是設f(x)是區間e上的函式,若對於任意的x屬於e,存在常數m、m,使得m≤f(x)≤m,則稱f(x)是區間e上的有界函式。其中m稱為f(x)在區間e上的下界,m稱為f(x)在區間e上的上界。

5樓:韓苗苗

limx→0(xsin1/x)d的極限不存在,

x→∞時,

x=1/(kπ)→0,sin(1/x)→0,原式→0

x=1/[(2k+1/2)π]→0,sin(1/x)→1,原式→1

x=1/[(2k-1/2)π]→0,sin(1/x)→-1,原式→-1

x從不同方向趨近時,值不相同,所以原式極限不存在。

擴充套件資料

極限」是數學中的分支——微積分的基礎概念,廣義的「極限」是指「無限靠近而永遠不能到達」的意思。

數學中的「極限」指:某乙個函式中的某乙個變數,此變數在變大(或者變小)的永遠變化的過程中,逐漸向某乙個確定的數值a不斷地逼近而「永遠不能夠重合到a」(「永遠不能夠等於a,但是取等於a『已經足夠取得高精度計算結果)的過程中,此變數的變化,被人為規定為「永遠靠近而不停止」、其有乙個「不斷地極為靠近a點的趨勢」。

極限是一種「變化狀態」的描述。此變數永遠趨近的值a叫做「極限值」(當然也可以用其他符號表示)。

6樓:薔祀

結果等於 1。

換元,令(1/x) =t ,

則 x→+∞等價於 t →0,

x·sin1/x= (sin t /t) =1。

極限的思想是近代數學的一種重要思想,數學分析就是以極限概念為基礎、極限理論(包括級數)為主要工具來研究函式的一門學科。

所謂極限的思想,是指「用極限概念分析問題和解決問題的一種數學思想」。

擴充套件資料

極限的思想方法貫穿於數學分析課程的始終。可以說數學分析中的幾乎所有的概念都離不開極限。

在幾乎所有的數學分析著作中,都是先介紹函式理論和極限的思想方法,然後利用極限的思想方法給出連續函式、導數、定積分、級數的斂散性、多元函式的偏導數,廣義積分的斂散性、重積分和曲線積分與曲面積分的概念。如:

(1)函式在 點連續的定義,是當自變數的增量趨於零時,函式值的增量趨於零的極限。

(2)函式在 點導數的定義,是函式值的增量 與自變數的增量 之比 ,當 時的極限。

(3)函式在 點上的定積分的定義,是當分割的細度趨於零時,積分和式的極限。

(4)數項級數的斂散性是用部分和數列 的極限來定義的。

(5)廣義積分是定積分其中 為,任意大於 的實數當 時的極限,等等。

參考資料

7樓:匿名使用者

極限為0

原因:定理:無窮小乘有界函式仍為無窮小。

無窮小:極限為零的函式稱為無窮小函式(此

題中x為無窮小)

有界函式:記住幾個常見的sinx,cosx,sin1/x,cos1/x

8樓:別樣de時光

「limx→0(x)乘以limx→0(sin1/x)

0乘以有界,或者按你思路limx→0(x乘以1/x)都為0」

9樓:匿名使用者

|xsin(1/x)|<=|x|

所以, 是0

10樓:展翅翱翔

這等於1啊!用兩個重要極限,變形limxsin1/x=lim(sin1/x)/(1/x)=1

lim[x→∞] (x+1/x-1)^x 求極限

11樓:曉龍修理

結果為:e^2

解題過程如下:

令y=(x+1/x-1)^x lny=x[ln(x+1)-ln(x-1)]

limlny= limx[ln(x+1)-ln(x-1)]

=lim[ln(x+1)-ln(x-1)]/(1/x)

=lim[1/(x+1)-1/(x-1)]/(-1/x^2)

=lim{2x^2/(x^2-1)

=lim2/(1-1/x^2)=2

limlny=2=lnlimy

limy=e^2

求函式極限的方法:

利用函式連續性,直接將趨向值帶入函式自變數中,此時要要求分母不能為0。

當分母等於零時,就不能將趨向值直接代入分母,因式分解,通過約分使分母不會為零。若分母出現根號,可以配乙個因子使根號去除。

如果趨向於無窮,分子分母可以同時除以自變數的最高次方。(通常會用到這個定理:無窮大的倒數為無窮小)

採用洛必達法則求極限,當遇到分式0/0或者∞/∞時可以採用洛必達,其他形式也可以通過變換成此形式。符合形式的分式的極限等於分式的分子分母同時求導。

12樓:116貝貝愛

結果為:e

解題過程如下:

lim [x/(x-1)]^x

x→∞=lim [(x-1+1)/(x-1)]^x

x→∞=lim [1+1/(x-1)]^[(x-1)x /(x-1)]

x→∞=lim e^[x /(x-1)]

x→∞=e

求數列極限的方法:

設一元實函式f(x)在點x0的某去心鄰域內有定義。如果函式f(x)有下列情形之一:

1、函式f(x)在點x0的左右極限都存在但不相等,即f(x0+)≠f(x0-)。

2、函式f(x)在點x0的左右極限中至少有乙個不存在。

3、函式f(x)在點x0的左右極限都存在且相等,但不等於f(x0)或者f(x)在點x0無定義。

則函式f(x)在點x0為不連續,而點x0稱為函式f(x)的間斷點。

13樓:小小芝麻大大夢

lim[x→∞] (x+1/x-1)^x =e^2。

令y=(x+1/x-1)^x,lny=x[ln(x+1)-ln(x-1)]

limlny

= limx[ln(x+1)-ln(x-1)]=lim[ln(x+1)-ln(x-1)]/(1/x)=lim[1/(x+1)-1/(x-1)]/(-1/x^2)=lim{2x^2/(x^2-1)

=lim2/(1-1/x^2)

=2所以 limlny=2=lnlimy

limy=e^2

擴充套件資料:極限的求法有很多種:

1、連續初等函式,在定義域範圍內求極限,可以將該點直接代入得極限值,因為連續函式的極限值就等於在該點的函式值。

2、利用恒等變形消去零因子(針對於0/0型)。

3、利用無窮大與無窮小的關係求極限。

4、利用無窮小的性質求極限。

5、利用等價無窮小替換求極限,可以將原式化簡計算。

6、利用兩個極限存在準則,求極限,有的題目也可以考慮用放大縮小,再用夾逼定理的方法求極限。

7、利用兩個重要極限公式求極限。

8、利用左、右極限求極限,(常是針對求在乙個間斷點處的極限值)。

9、洛必達法則求極限。

14樓:幸福的蘭花草

(1)直接求,就是湊常用極限,lim[x→∞]^[2x/(x-1)]=e²

(2)取對數:

lny=x[ln(x+1)-ln(x-1)]=xln[1+2/(x-1)] x→∞ , 2/(x-1)→0,ln[1+2/(x-1)] ~2/(x-1)

(注:ln(1+x)~x x→0時) 所以,lim x→∞ lny=lim x→∞ 2x/(x-1) =2 所以,y的極限就是e²。

希望對你有幫助。

15樓:匿名使用者

解答:lim[x→∞

] (x+1/x-1)^x

=lim[x→∞] ^x

=lim[x→∞]

=lim[x→∞] [(1+1/x)^x]÷lim[x→∞][(1-1/x)^x]

=e÷e^(-1)=e^2

16樓:匿名使用者

^令y=(x+1/x-1)^x lny=x[ln(x+1)-ln(x-1)] ,

limlny= limx[ln(x+1)-ln(x-1)] =lim[ln(x+1)-ln(x-1)]/(1/x)=lim[1/(x+1)-1/(x-1)]/(-1/x^2)

=lim{2x^2/(x^2-1)=lim2/(1-1/x^2)=2, 所以 limlny=2=lnlimy

limy=e^2

17樓:year醫海無邊

都學到極限了,平方差立方差公式應該很常用應該記得吧,x^3-1應該怎麼因式分解的,通分後繼續分子因式分解。

18樓:匿名使用者

錯了。 lny=x*(ln(x+1/x-1))

當x趨於無窮的時候ln(x+1/x-1)=lnx趨於無窮

大一高等數學求解 圖中為什麼lim1\xsin1\x不存在啊

19樓:孤獨的狼

假設存在,那麼lim(x->0)1/xsin(1/x)就應該唯一(1)設x=1/2kπ

所以此時k應當趨近

於+∞那麼有lim(k->+∞)2kπsin(2kπ)=0(2)設x=1/(2kπ+π/2)

所以此時k應當趨近於+∞

那麼有lim(k->+∞)(2kπ+π/2)sin(2kπ+π/2)確不存在

因為同樣是x趨近於0,只是以兩種不同的方式來趨近,導致了極限存在與否不同

也就說明了假設是不成立

即原結論成立

20樓:小蝦公尺眯

根據極限性質極限存在必唯一,前一項當x趨於0的時候,1除以x是無窮大,後面是**的,兩項相乘當然沒有乙個固定的數可以作為極限值,所以極限就不存在了。同學。你是打算考研嗎?

21樓:匿名使用者

x做分母 分母為0就沒意義了,上式中x都是分母,x趨近0就沒意義,不存在了

22樓:

sin有界 另乙個無窮 所以不存在

求解 lim x->0 , sin(1/x) 的極限? 求解 lim x->0 , x*( sin(1/x) ) 的極限? 一定要說出詳細的解題過程

23樓:匿名使用者

第乙個無極限

第二個為0

第乙個lim x->0 sin(1/x) = lim t->無窮 sin(t)

若極限內存在為a不等容於0,即當t>t0之後sin(t)=a,則sin(t+pi)=-a 不等於a,所以極限不存在

若極限為0,取t=t0+pi/2,sin(t)=1,所以a不為零第二個因為|sin(1/x)|<=1

0<=|x*sin(1/x)|=|x|*|sin(1/x)|<=|x|

當x->0,|x|->0

由夾逼定理,lim x*( sin(1/x) )=0

1 x dx求解題過程, x 1 x dx求解題過程

你給的題幹不全,計算步驟參考下面的 答案是 2 2 3 解題過程如下 1 3 1 x 1 x dx 令x tanu,則 1 x secu,dx sec udu,u 4 3 4 3 1 tan usecu sec u du 4 3 secu tan u du 4 3 cosu sin u du 4 3...

求過程,求解析。已知f x 1 x 2 x,則f x

函式f x 是定義在r上的齊函式,且對任意x屬於r都有f x 1 f 1 x 成立,若當x屬於 0,1 f x loga x 1 a 1.求f 10 的值。2,求x屬於 2011,2013 時,函式f x 的表示式。3,若函式f x 的最大值是1 2,解關於x的不等式f x 1 4 1 解析 函式f...

用消元法求解非齊次方程組x1x23x3x

寫出增廣矩陣為 1 1 3 1 1 3 1 3 4 3 1 5 9 8 1 r2 3r1,r3 r1 1 1 3 1 1 0 4 6 7 0 0 4 6 7 0 r2 r3,r1 r3 4,交換行次序 1 0 3 2 3 4 1 0 1 3 2 7 4 0 0 0 0 0 0 分別令後兩列為 2,0...