若所有x 1,a x 1x 2 2x 3,則實數a的取值範圍是

2022-03-28 02:58:46 字數 1045 閱讀 6506

1樓:

由於x+1>0,那麼a<=(x^2+2x+3)/(x+1)=[(x+1)^2+2]/(x+1)=(x+1)+2/(x+1)

這是乙個均值不等式,那麼[(x+1)+2/(x+1)]min=2√2

於是amax=2

2樓:李純煜

x>-1,所以x+1>0

原不等式可轉換為a<=(x^2+2x+3)/(x+1)=[ (x+1)^2+2 ]/(x+1) = (x+1)+2/(x+1)

只需要求出 (x+1)+2/(x+1)的最小值即可求出a的取值範圍根據基本不等式得 (x+1)+2/(x+1)=>2根號下的 (x+1)*2/(x+1)=2根號2

當且僅當x+1=2/(x+1),即x=根號2-1時取得最小值所以a<=2根號2

3樓:易冷松

x+1>0,a<=(x^2+2x+3)/(x+1)=[(x+1)^2+2]/(x+1)=(x+1)+2/(x+1)。

當x+1=2/(x+1),即x=√2-1時,(x+1+2/(x+1)取最小值2√2。

所以,a的最大值是2√2

若關於x的不等式(2x-1)^2

4樓:翼

(4-a)x^2-4x+1<0

顯然,4-a>0,delta>0,於是00

若關於x的不等式(2x-1)^2

5樓:匿名使用者

思路:顯然a>0,則-(√a)x<2x-1<(√a)x即1<[2+(√a)]x 且[2-(√a)]x<1即1/[2+(√a)]

即2(√a)]/(4-a)≥3,

自己解了。

6樓:匿名使用者

(2√10-2)/3≤a<(√17-1)/2

若2x3x1,則x的取值範圍是注意平方都在根號下

x 3時 x 2 x 3 2x 不符 x 2 時 2 x 3 x 5 不符 2 x 3 時 x 2 3 x 1 所以2 x 3 2 x 3 x 1,即 x 2 x 3 1 表示數軸上x表示的點到2和3的距離和為1 所以2 x 3 若代數式 2 x x 4 的值是常數2,則x的取值範圍是 解 2 x ...

若代數式x 3x 2可以表示為 x 1 2 a x 1 b的形式,則a b的值是

x 3x 2 x 1 2x 1 3x 2 x 1 5x 1 x 1 5 x 1 6。a 5,b 6,a b 11。二次函式 quadratic function 的基本表示形式為y ax bx c a 0 二次函式最高次必須為二次,二次函式的影象是一條對稱軸與y軸平行或重合於y軸的拋物線。拆 x 1...

若x1,x2是關於x的方程x 2 2k 1 x k 2 1 0的兩實根,且x1,x2都大於1 求 1 k的取值範圍 2 若x

1 判別式 4k 3 0 k 3 4韋達定理x1 x2 2k 1 2 k 0.5x1x1 k 2 1 1 k不等於0 因為a 0,當x 1時,y 0 k不等於1綜上,k 3 4且k不等於1 2 令x1 a,則x2 2a 原方程 x a x 2a 0 x 2 3ax 2a 2 0 3a 2k 1 且2...