數學。線性代數。高等數學。請問如何證明這個矩陣的行列式可以被

2022-03-06 10:35:03 字數 5854 閱讀 3678

1樓:mono教育

根據「行列式中某行(列)的k倍加另一行(列),其值不變」

第一列乘10000,加到其他四列去;

第二列乘1000,加到其他四列去;

第三列乘100,加到其他四列去;

第四列乘10,加到其他四列去;

然後行列式變成:

21375 21375 21375 21375 2137538798 38798 38798 38798 38798即可證明

線性代數

是數學的乙個分支,它的研究物件是向量,向量空間(或稱線性空間),線性變換和有限維的線性方程組。向量空間是現代數學的乙個重要課題;因而,線性代數被廣泛地應用於抽象代數和泛函分析中;通過解析幾何,線性代數得以被具體表示。

線性代數的理論已被泛化為運算元理論。由於科學研究中的非線性模型通常可以被近似為線性模型,使得線性代數被廣泛地應用於自然科學和社會科學中。

2樓:物理公司的

2 1 3 7 5

3 8 7 9 8

3 4 1 6 2

4 0 2 2 3

7 9 1 5 4

把第一列*10000+第二列*1000+第三*100+第四*10+第五

=2 1 3 7 21375

3 8 7 9 。。。

3 4 1 6 。。。

4 0 2 2 。。。

7 9 1 5 。。。

第5列的數都是19的倍數,故第5列提出19後仍是整數故行列式是19的倍數

3樓:母遠虎珍

非常同意「怕瓦落地」的解法,不過樓主說是自學的,按照第一列可能一時難易理解。

首先,對自學者也好,初學者也好,二階行列式應該是口算就能寫出的。

然後接著解釋:

x的三次方是第一行第一列的元素乘以它的代數余子式,這個代數余子式是乙個二階行列式等於x的平方

所以就有乙個x三次方

-1的2+1次方是第二行第一列的意思,然後第二行第一列乘以他的代數余子式,是-y的平方

第三行第一列是0,乘以他的代數余子式就沒有了。

如果你對某行或某列不熟悉的話,繼續將他化成上(下)三角形形式也可以。

就是第一行乘以-y/x加到第二行,(這樣就把第一行第一列以下的元素全部化成0)

然後再把第二行乘以-y/x加到第三行,此時行列式就是乙個上三角形了,

把主對角線的元素連乘就行了。

如何證明這個矩陣的行列式可以被19整除

4樓:zzllrr小樂

用初等行變換,然後化成某一行都含有因子19,即可得證

高等數學線性代數,請問一階行列式的值要怎麼計算

5樓:不是苦瓜是什麼

一階行bai

列式由乙個數組成,它的

du值就是這個數本

zhi身。

一階行列式dao就專是僅有一行一列的行列式屬一階行列式就

等於它的元素

換言之,|a|=a

6樓:尹六六老師

一階行列式就是僅有一行一列的行列式,

我們規定,

一階行列式就等於它的元素,

換言之,

|a|=a

7樓:粟公尺范姜磊

你好!一階行列式由乙個數組成,它的值就是這個數本身。經濟數學團隊幫你解答,請及時採納。謝謝!

高等數學和線性代數的區別在**?

8樓:匿名使用者

1、包含範圍不同:

線性代數:高等代數內容的一重要部分,並且線性代數重點是掌握矩陣這一塊,計算居多,是非數學系的理工科生學的。

高等代數:掌握的東西多一些,內容上增加多項式和雙線性函式、酉空間、辛空間等抽象內容。

2、研究方向不同:

線性代數:研究物件是向量,向量空間(或稱線性空間),線性變換和有限維的線性方程組。向量空間是現代數學的乙個重要課題;因而,線性代數被廣泛地應用於抽象代數和泛函分析中;

高等代數:主要以證明為主,屬於數學系學生所學。高等數學有其固有的特點,這就是高度的抽象性、嚴密的邏輯性和廣泛的應用性。抽象性和計算性是數學最基本、最顯著的特點。

3、實際應用方向不同:

線性代數:線性代數的理論已被泛化為運算元理論。由於科學研究中的非線性模型通常可以被近似為線性模型,使得線性代數被廣泛地應用於自然科學和社會科學中。

高等代數:電子計算機的出現和普及使得數學的應用領域更加拓寬,現代數學正成為科技發展的強大動力,同時也廣泛和深入地滲透到了社會科學領域。

9樓:半寂蓮燈

1.高等數學包含線性代數

高等數學是由微積分學,較深入的代數學、幾何學以及它們之間的交叉內容所形成的一門基礎學科。主要內容包括:數列、極限、微積分、空間解析幾何與線性代數、級數、常微分方程。

2.高等數學比線性代數難

高等數學要掌握幾何,代數和分析,而線性代數重點在矩陣那塊,掌握算的技巧就會做題了。

3.先學高等數學,再學線性代數

大多數學校都是大一先開高等數學,大二再開線性代數。個人認為線性代數只要掌握高中的行列式就可以入門了,高等數學要掌握的東西挺多的。

10樓:他de生活

線性代數是高等代數內容的一重要部分,並且線性代數重點是掌握矩陣這一塊,計算居多,是非數學系的理工科生學的;

高等代數掌握的東西多一些,內容上增加多項式和雙線性函式、 酉空間、辛空間等抽象內容,而且高等代數主要以證明為主,屬於數學系學生所學。

高等數學的特點:

作為一門基礎科學,高等數學有其固有的特點,這就是高度的抽象性、嚴密的邏輯性和廣泛的應用性。抽象性和計算性是數學最基本、最顯著的特點。

有了高度抽象和統一,我們才能深入地揭示其本質規律,才能使之得到更廣泛的應用。

嚴密的邏輯性是指在數學理論的歸納和整理中,無論是概念和表述,還是判斷和推理,都要運用邏輯的規則,遵循思維的規律。

所以說,數學也是一種思想方法,學習數學的過程就是思維訓練的過程。人類社會的進步,與數學這門科學的廣泛應用是分不開的。

尤其是到了現代,電子計算機的出現和普及使得數學的應用領域更加拓寬,現代數學正成為科技發展的強大動力,同時也廣泛和深入地滲透到了社會科學領域。

線性代數的意義:

線性代數在數學、物理學和技術學科中有各種重要應用,因而它在各種代數分支中占居首要地位。

在計算機廣泛應用的今天,計算機圖形學、計算機輔助設計、密碼學、虛擬實境等技術無不以線性代數為其理論和演算法基礎的一部分。

線性代數所體現的幾何觀念與代數方法之間的聯絡,從具體概念抽象出來的公理化方法以及嚴謹的邏輯推證、巧妙的歸納綜合等,對於強化人們的數學訓練,增益科學智慧型是非常有用的。

11樓:只梨花匠

區別就是:線性代數是高等數學中的一部分。

線性代數是數學的乙個分支,它的研究物件是向量,向量空間(或稱線性空間),線性變換和有限維的線性方程組。向量空間是現代數學的乙個重要課題;因而,線性代數被廣泛地應用於抽象代數和泛函分析中;通過解析幾何,線性代數得以被具體表示。

線性代數的理論已被泛化為運算元理論。由於科學研究中的非線性模型通常可以被近似為線性模型,使得線性代數被廣泛地應用於自然科學和社會科學中。

線性代數是代數學的乙個分支,主要處理線性關係問題。線性關係意即數學物件之間的關係是以一次形式來表達的。

例如,在解析幾何裡,平面上直線的方程是二元一次方程;空間平面的方程是三元一次方程,而空間直線視為兩個平面相交,由兩個三元一次方程所組成的方程組來表示。含有n個未知量的一次方程稱為線性方程。關於變數是一次的函式稱為線性函式。

線性關係問題簡稱線性問題。解線性方程組的問題是最簡單的線性問題。

所謂「線性」,指的就是如下的數學關係:

。其中,f叫線性運算元或線性對映。所謂「代數」,指的就是用符號代替元素和運算,也就是說:

我們不關心上面的x,y是實數還是函式,也不關心f是多項式還是微分,我們統一把他們都抽象成乙個記號,或是一類矩陣。合在一起,線性代數研究的就是:滿足線性關係

的線性運算元f都有哪幾類,以及他們分別都有什麼性質。

高等數學:

指相對於初等數學而言,數學的物件及方法較為繁雜的一部分。

廣義地說,初等數學之外的數學都是高等數學,也有將中學較深入的代數、幾何以及簡單的集合論初步、邏輯初步稱為中等數學的,將其作為中小學階段的初等數學與大學階段的高等數學的過渡。

通常認為,高等數學是由微積分學,較深入的代數學、幾何學以及它們之間的交叉內容所形成的一門基礎學科。

主要內容包括:極限、微積分、空間解析幾何與線性代數、級數、常微分方程。

工科、理科研究生考試的基礎科目。

12樓:哈哈

高等

數學和線性代數的區別在:線性代數只是高等數學裡面的乙個重要部分,線性代數重點是掌握矩形這一塊。線性代數:

非數學系的理工科生所學。高等數學:屬於數學系學生所學。

拓展資料:

「高等數學」指相對於初等數學而言,數學的物件及方法較為繁雜的一部分。由微積分學,較深入的代數學、幾何學以及它們之間的交叉內容所形成的一門基礎學科。主要內容包括:

極限、微積分、空間解析幾何與線性代數、級數、常微分方程。

簡單來說,手機裡的每乙個程式,每乙個晶元,他們的設計理論基礎都要用到高數和線代。

手機能掃***就是線性代數的功勞。手機打**,***能調模式等等,也是線性代數的功勞。而沒有高數,你家電壓就會不穩......

13樓:

高中數學基礎足以學習線性代數了

14樓:匿名使用者

首先我把我個人感覺告訴你

1.高數比線代難

2.兩者相互聯絡很小,不學高數,也能學會線代,也就是說隨便學哪個,對另乙個都沒什麼影響,學校開課是先學高數,但我覺得兩者沒什麼共性

3.線代其實只要學過高中的行列式,入門是很快的,而高數要花的功夫就比較多了

以上是我個人感覺,我是針對大學開的課來說的

15樓:我是岳會強

我是數學系的學生

談一下我的感受線性代數主要是解方程組,考試不會很難只要知道相關概念即可,但是向我們平時做的題幾天都做不出來。考試沒什麼,一次多元方程就是高中也能解,只是用了比較先進的工具-矩陣。

而高等數學主要內容就是微積分了,主要和函式打交道。線性代數可以說不要任何基礎,只要會加減就行了,而高數要有敏捷 的數學思維,深厚的基礎。

16樓:匿名使用者

線性代數是高等數學的乙個分支。

如何利用特徵值計算矩陣的行列式 線性代數

17樓:不是苦瓜是什麼

1.a經過初等變換後可以變為對角陣,p-1ap=diag(r1,r2,...rn),取行列式後就是|a||p-1||p|=|diag(r1,r2...

rn)|,因為p的行列式和p的逆的行列式乘積為1,所以a的行列式等於特徵值構成的對角陣的行列式,也就是等於特徵值的成績。

2.求|re-a|,r是特徵值,得到的特徵方程可以寫成(r-r1)(r-r2)...(r-rn),常數項是r1*r2...

*rn,又因為常數項等於|a|,所以a的行列式等於特徵值的乘積。

矩陣變換是線性代數中矩陣的一種運算形式。

(1) 交換矩陣的兩行(對調i,j,兩行記為ri,rj);

(2) 以乙個非零數k乘矩陣的某一行所有元素(第i行乘以k記為ri×k);

(3) 把矩陣的某一行所有元素乘以乙個數k後加到另一行對應的元素(第j行乘以k加到第i行記為ri+krj)。

類似地,把以上的「行」改為「列」便得到矩陣初等變換的定義,把對應的記號「r」換為「c」。

矩陣的初等行變換與初等列變換合稱為矩陣的初等變換。

線性代數數學高等數學,線性代數,與高等數學哪本比較難

很難嗎?假設b是a11,a12,a13 然後直接硬算就行了。線性代數,與高等數學哪本比較難 個人認為線性代數比高等數學容易一些。高等數學屬於分析學,研究的主要是分析運算 積分和微分。它的理論性很強,概念抽象,邏輯嚴密。若只是為了用結論,沒什麼難的,但如果抱著學通,學懂的態度去學,要花真功夫。你看看數...

高等數學線性代數問題,高等數學沒學好,線性代數會有問題嗎?

若是用正交化方法化二次型 為標準型,則第三步到第五步是必須的,要不你到 去求那個正交變換呢?若不對特徵向量進行標準正交化,那就不是正交對角化,而是相似對角化了.實對稱矩陣是可以相似對角化,額,我們一般會叫相合,因為是正交矩陣,其逆矩陣即為轉置矩陣,相似變換即為相合變換了 所以第四步不用正交化了,直接...

高等數學沒學好,線性代數會有問題嗎

學好高等數學 和中學不同的是高數需要 想的來 並不需要多大的計算能專力,要放開思維去想 屬會想,想通了 數學思維建立了就簡單了。線性代數 開頭很枯燥,又不知道是幹什麼的。後來才知道,線性代數就是求多元一次方程的學科,記好法則 公式,其實很簡單的。若求5元一次方程,起碼比中學時期要容易得多!沒問題 線...