1樓:匿名使用者
解法二的bai思路就是考du慮正弦函式
值相同的角zhi的關係,兩個角α
dao,β如果正弦值相同回
的話那麼就有α+β答=(2n+1)π 或者 α=β+2nπ綜合一下 就是 β= kπ-α(k為奇數)β= kπ+α(k為偶數)
所以可以寫成 β= kπ +(-1)^kα,k∈z接下來只要把4x和5x分別替代α和β就好了
2樓:匿名使用者
sin5x=sin4x 則5x= kπ + (-1) ^k*4x
這個式子是 5x=4x+2kπ(k ∈z)
和5x=π-4x+2kπ(k ∈z)的 合併
3樓:文仙靈兒
因為與α有相同的正弦值的弧度數x的集合是
這個不理解嗎?版
它是這樣的,權當k是偶數時,設k=2n
sin[2nπ+(-1)^2n*α]=sinα(誘導公式)
當k是奇數時,設k=2n+1
sin[(2n+1)π+(-1)^(2n+1)*α]=sin(π-α)=sinα
看了你的補充,我覺得你應該是沒理解一般與特殊的關係
你說的那種是特殊情況,而解法二是一般情況,即是說相當於是數列的通項公式
對於你任何舉的特殊例子,在通項公式總能找到一項與之對應
比如你說的sin·5π/6=sin·π/6,你套進一般公式,就會發現k=1。所以你套k=0進去是不會相等的
對於題目的解,自然是要把它的一般公式給解出來,即是說相當於解數列的通項公式
希望你能從一般與特殊的方面去考慮
4樓:公子向張
看一下bai正弦曲線。畫一條
du水平線。。。。。然後
zhi就得到dao:與α有相同的
專正弦值的弧度數x的集屬合是,把4x和5x帶進去。。 所以原方程可以化成」是怎樣化成「 5x=kπ+ (-1) ^k•4x (k∈z).
5樓:匿名使用者
sina 和 sinb 兩個值相等的話baidu首先 可能有關係
a=2kpi + b
另外 由於 pi-a 與 a 的sin值也zhi相同所以dao 2kpi+pi -a 與 a 的sin值也相同就是專所以b與a的關係屬還可能是
a =(2k+1)pi - b
除了這兩種關係,就沒別的關係了
注意 -1 可以寫成 (-1)的2k+1次方的形式1可以寫成-1的2k次方的形式
a =(2k+1)pi - b
a=2kpi + b
這個形式就可以統一了
a=nπ+ (-1) ^nb
a = 5x
b = 4x
就得到了答案
6樓:匿名使用者
老大,你所說的k是冪,任何數的零次方是1,怎麼就不成立呢
7樓:匿名使用者
意思是如果sina=sinx 則x= kπ + (-1) ^k?α 這是相同正弦值的集合
不知道你是哪個地方不懂
學好數學
8樓:鶇鴿
一.技巧方面 1.對於選擇題,說句老實話,可以不擇手段。在不失一般性的情況下,
代入法,賦特殊值值法,驗證法,舉反例等。這是技巧方面的。要經常用。
2.解答題,這個是逐步訓練出來的。準備錯題本。
3.每天都要做題,這樣才有感覺。這很重要。
4.做筆記啊!這個很重要。每週把本週所學的都看一邊,找點題,做一做。
二.思維方面的訓練
1.要把概念吃透。這是一切的前提。
2.要善於總結同一型別的題目,同一型別的知識。
3.要舉一反三,考慮題目的知識點,出題的角度。這在高三尤其重要。
另外,要相信自己。不要急。欲速則不達。
做題!!不論是一般的高分白痴還是拿諾貝爾獎的名家都是這麼說的!!
最重要的是興趣
數學是其他自然學科的基礎,可以說現在前沿的科學沒有哪個是能離開數學的,很多學人不能更進一步主要就是因為數學給卡住了
所以,不能給自己任何學不好數學的退路
況且,學好數學能培養你邏輯思維的習慣,能夠更加客觀的認識和分析世界
但是要做到循序漸進,要在學習過程中不斷鼓勵激勵自己,當自己能成功解決乙個個問題時,哪怕在別人看來很容易,只要自己得到了提高,就是不錯的成績。每個人取得的成就往往不在於客觀獲得的成績,而在於他對於自身的征服,提高自我的程度。
既然問到這個問題了,想必你是有準備的。
多努力,你一定會成功的。
9樓:匿名使用者
這絕對是我個人經驗,很多人說很好使,你可以看看:
1、首先要有興趣,能靜下心來作些奧數題;
2、不懂多思考,多問,多想;
3、多與數學老師和數學高手交往,隨時向他請教問題就行;
4、開始向老師要一些有難度的題,先自己做,努力做,上限乙個題一小時,不會的話,下次做稍微簡單一點的,循序漸進;
5、參加比賽(奧林匹克數學競賽),證實自己的能力,使自己更加有信心,有興趣。
注意:不要做的太多太多,會煩的哦!還有不可以煩數學老師,否則是不可能做好的,當然,做不出來也可以問同學和老師,如果他們也做不出來,就跳過去把,那種題是沒有用的。
當然,不可以侷限於課本,現在課本裡的東西太少了,去找找人教版的書最好,我說得就這些,最後,祝你成功學好數學,中考高考能沉著冷靜,謝謝!
10樓:匿名使用者
文科就更簡單了,我給你說理科的學法,其實和文科的一樣.
1.掌握基本定義,概念,公式
2.掌握幾種重要思想(非常重要)分別是:
轉化,尤其是求常規方法難以求解的,多為選擇填空題.最值問題轉化不等式,三角函式,引數方程,線型規劃;單調性,定義法,比值法,導數;解析幾何,第二定義轉化,方程思想;立體幾何,空間座標系,向量;不等式,基本形,函式,歸納法,中間值,導數.
數形結合.最值問題,變形後分別作圖;範圍問題,恆成立或存在畫圖輕鬆求解
分類討論,儘量減少分類,多見於函式討論,排列組合
3.典型數學模型.數列求和,遞推公式,裂項求和(有很多種,高考常考),倒順相加減求和,錯位相加減等;排列組合問題,抽籤問題,二項分布,幾何分布,插板法等.
函式掌握三次方程係數和為0必有x=1這一解,勾勾函式.解析幾何座標變換等;立體幾何球面相切或球外接問題,如正方形,正四面體,牆角相切模型.
應試技巧:
選擇題:有些題可以檢驗,有些可以通過縮小範圍求得,多用轉化,數形結合,如果計算量大,那就不是出題者本意,一時想不出,放棄
大題切忌跳題,對於最後的2道題,可以做前2個小問.
多記錄錯題,認真分析,對於一些易錯點效果很好.
注重課本上的典型事例,加以分析.做題應求質量,不求數量,每做一道題,都要領悟其中的思路,做題最好找那些易錯的簡單題和比較典型的題,這樣效果比較好.
總之很多,以上是我所能想到的概況.
11樓:匿名使用者
最短的捷徑是要找老師溝通。不要怕,老師都希望你好。再怎麼說,老師的水平總要比你高,尤其是在如何學習方面。
找老師的主要目的是建立起該學科的思維方式。學文的同學尤其應該注意,不要用學文科的思維方式學理科。不把這一點改變,只能事倍功半,甚至顆粒無收。
學每一科的思維方式都不同。
這是我上學時老師說的,極有用。我勸你應該嘗試。
12樓:匿名使用者
一句話:千里之行,始於足下!!
別在為這些問題煩惱了~
開始行動吧!
你一定會在探索裡有所發現的!
興趣是最好的老師
多多努力哦!
愛上數學!愛上學習吧!!!
祝你成功!
13樓:心隨花飄落
學好數學的根本還是多作題咯,要實行題海戰術來提高成績.
14樓:匿名使用者
大家都很厲害,我就不用了吧.
15樓:為愛旋舞
上面的答案我都認為不準確!因為學習學習,學而習之,關鍵在於自己,自己想好,有進取心的話,再加上一點自信與努力,我相信,你一定可以征服數學的!!!!!!!!!!!!!!!!
16樓:匿名使用者
認真聽課,作業認真做,不要空一題就可以學好數學了~
17樓:柳浪臨風
目標不要高,每天做一點題目,日積月累必有成效!
18樓:匿名使用者
別怕動腦子,理解概念
如何學好高中數學函式?
19樓:匿名使用者
數學必修一還只是高中課程的開始,所以不會太難,但是基礎要打好。
比如第一章:集合與函式概念。這一部分概念的記憶比較重要,而考試的時候很容易因為概念模糊而失分,所以上課的時候一定要認真聽講。
老師講課講得快也不代表講得不好,反而可以提高學生的思維速度。
第二章:基本初等函式。第三章:函式的應用。
函式是高中階段非常關鍵的乙個知識點,什麼單調性、最值、週期性、對稱性都會在後面的學習中有廣泛的應用。建議函式這一章多做一點練習,一邊練習一邊歸納。想要知道一道題該用什麼方法做這是問不出來的,題目做多了自然而然就成了自己的經驗,看到題目就會非常自然的做出來啦。
不做數學題就想學好數學是不可能的,而學數學也不能急功近利。一邊練習的同時一邊歸納做題的方法,數學成績自然而然就會好起來啦~ 還有,自信也是非常重要的~
哈哈lz,其實我是高三的,這只是我學了3年後的一點點小心得,希望對你有用,加油!~
20樓:峰何以笙簫默
一、學數學就像玩遊戲,想玩好遊戲,當然先要熟悉遊戲規則。
想學好函式,第一要牢固掌握基本定義及對應的影象特徵,如定義域,值域,奇偶性,單調性,週期性,對稱軸等。很多同學都進入乙個學習函式的誤區,認為只要掌握好的做題方法就能學好數學,其實應該首先應當掌握最基本的定義,在此基礎上才能學好做題的方法,所有的做題方法要成立歸根結底都必須從基本定義出發,最好掌握這些定義和性質的代數表達以及影象特徵。
二、牢記幾種基本初等函式及其相關性質、圖象、變換。
中學就那麼幾種基本初等函式:一次函式(直線方程)、二次函式、反比例函式、指數函式、對數函式、正弦余弦函式、正切餘切函式,所有的函式題都是圍繞這些函式來出的,只是形式不同而已,最終都能靠基本知識解決。還有三種函式,儘管課本上沒有,但是在高考以及自主招生考試中都經常出現的對勾函式:
y=ax+b/x,含有絕對值的函式,三次函式。這些函式的定義域、值域、單調性、奇偶性等性質和影象等各方面的特徵都要好好研究。
三、影象是函式之魂!要想學好做好函式題,必須充分關注函式圖象問題。
翻閱歷年高考函式題,有乙個算乙個,幾乎百分之八十的函式問題都與影象有關。這就要求童鞋們在學習函式時多多關注函式的影象,要會作圖、會看圖、會用圖!多多關注函式圖象的平移、放縮、翻轉、旋轉、復合與疊加等問題。
四、多做題,多向老師請教,多總結吧。
多做題不是指題海戰術,而是根據自己的情況,做適當的題目;重點要落在多總結上,總結什麼呢?總結題型,總結方法,總結錯題,總結思路,總結知識等!
高一數學題一道,高一數學題一道
原函式在 來0,1 上單調遞減自 在 1,上單調遞增bai.說明du函式的對稱軸zhi為x 1 對稱軸為 1 2ab 1,ab 1 2f x 為奇函dao數 f x ax 2 1 bx c ax 2 1 bx c f x ax 2 c 0 ax 2 c 又f 1 2 f 1 a 1 b a 2 b ...
一道高一數學題!!!求解一道高一數學題!!
如果不考慮時間的價值,也就是說不考慮錢放在自己手裡得到的投資回報或是取得的利息 這數很小,沒有乙個標準來計算,可以不計 那麼 方案1增加的薪水為,n 6 300 n 12 300 n 18 300 n 24 300 方案2增加的薪水為,n 12 1000 n 24 1000 工作12 18個月時,總...
高一數學數列求通項公式的常用解法加例題
看你要選文還是理哦 我是理的 所以我談下理科的 理綜和初中不同的就是 應該適當做下筆記,要記得實驗步驟,實踐才是關鍵,現在是新教材你知道吧 數學 語文 英語 都有必修5本 我現在高二,數學 語文 英文必修都學到了4 數學 必修1 集合 增減函式,對映,指數函式,對數函式,大概就這些重點吧,畢竟這個是...