1樓:我是吉安
誘導公式的本質
所謂三角函式誘導公式,就是將角n·(π/2)±α的三角函式轉化為角α的三角函式。
常用的誘導公式
公式一: 設α為任意角,終邊相同的角的同一三角函式的值相等:
sin(2kπ+α)=sinα k∈z
cos(2kπ+α)=cosα k∈z
tan(2kπ+α)=tanα k∈z
cot(2kπ+α)=cotα k∈z
公式二: 設α為任意角,π+α的三角函式值與α的三角函式值之間的關係:
sin(π+α)=-sinα k∈z
cos(π+α)=-cosα k∈z
tan(π+α)=tanα k∈z
cot(π+α)=cotα k∈z
公式三: 任意角α與 -α的三角函式值之間的關係:
sin(-α)=-sinα
cos(-α)=cosα
tan(-α)=-tanα
cot(-α)=-cotα
公式四: 利用公式二和公式三可以得到π-α與α的三角函式值之間的關係:
sin(π-α)=sinα
cos(π-α)=-cosα
tan(π-α)=-tanα
cot(π-α)=-cotα
公式五: 利用公式一和公式三可以得到2π-α與α的三角函式值之間的關係:
sin(2π-α)=-sinα
cos(2π-α)=cosα
tan(2π-α)=-tanα
cot(2π-α)=-cotα
公式六: π/2±α與α的三角函式值之間的關係:
sin(π/2+α)=cosα
cos(π/2+α)=-sinα
tan(π/2+α)=-cotα
cot(π/2+α)=-tanα
sin(π/2-α)=cosα
cos(π/2-α)=sinα
tan(π/2-α)=cotα
cot(π/2-α)=tanα
誘導公式記憶口訣:「奇變偶不變,符號看象限」。
「奇、偶」指的是π/2的倍數的奇偶,「變與不變」指的是三角函式的名稱的變化:
「變」是指正弦變余弦,正切變餘切。(反之亦然成立)「符號看象限」的含義是:
把角α看做銳角,不考慮α角所在象限,看n·(π/2)±α是第幾象限角,從而得到等
式右邊是正號還是負號。
符號判斷口訣: 「一全正;二正弦;三兩切;四余弦」。這十二字口訣的意
思就是說: 第一象限內任何乙個角的四種三角函式值都是「+」; 第二象限內只有正弦
是「+」,其餘全部是「-」; 第三象限內只有正切和餘切是「+」,其餘全部是「-」;
第四象限內只有余弦是「+」,其餘全部是「-」。 「asct」反z。意即為「all(全部)」、
「sin」、「cos」、「tan」按照將字母z反過來寫所佔的象限對應的三角函式為正值。
其他三角函式知識
同角三角函式的基本關係式
倒數關係
tanα ·cotα=1
sinα ·cscα=1
cosα ·secα=1
商的關係
sinα/cosα=tanα=secα/cscα
cosα/sinα=cotα=cscα/secα
平方關係
sin^2(α)+cos^2(α)=1
1+tan^2(α)=sec^2(α)
1+cot^2(α)=csc^2(α)
同角三角函式關係六角形記憶法
構造以"上弦、中切、下割;左正、右餘、中間1"的正六邊形為模型。
倒數關係 對角線上兩個函式互為倒數;
商數關係 六邊形任意一頂點上的函式值等於與它相鄰的兩個頂點上函式值的乘積。
(主要是兩條虛線兩端的三角函式值的乘積)。由此,可得商數關係式。
平方關係 在帶有陰影線的三角形中,上面兩個頂點上的三角函式值的平方和等於下
面頂點上的三角函式值的平方。
兩角和差公式
sin(α+β)=sinαcosβ+cosαsinβ
sin(α-β)=sinαcosβ-cosαsinβ
cos(α+β)=cosαcosβ-sinαsinβ
cos(α-β)=cosαcosβ+sinαsinβ
tan(α+β)=(tanα+tanβ )/(1-tanα ·tanβ)
tan(α-β)=(tanα-tanβ)/(1+tanα ·tanβ)
二倍角的正弦、余弦和正切公式
sin2α=2sinαcosα
cos2α=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)
tan2α=2tanα/(1-tan^2(α))
半形的正弦、余弦和正切公式
sin^2(α/2)=(1-cosα)/2
cos^2(α/2)=(1+cosα)/2
tan^2(α/2)=(1-cosα)/(1+cosα)
tan(α/2)=(1—cosα)/sinα=sinα/1+cosα
萬能公式
sinα=2tan(α/2)/(1+tan^2(α/2))
cosα=(1-tan^2(α/2))/(1+tan^2(α/2))
tanα=(2tan(α/2))/(1-tan^2(α/2))
三倍角的正弦、余弦和正切公式
sin3α=3sinα-4sin^3(α)
cos3α=4cos^3(α)-3cosα
tan3α=(3tanα-tan^3(α))/(1-3tan^2(α))
三角函式的和差化積公式
sinα+sinβ=2sin((α+β)/2) ·cos((α-β)/2)
sinα-sinβ=2cos((α+β)/2) ·sin((α-β)/2)
cosα+cosβ=2cos((α+β)/2)·cos((α-β)/2)
cosα-cosβ=-2sin((α+β)/2)·sin((α-β)/2)
三角函式的積化和差公式
sinα·cosβ=0.5[sin(α+β)+sin(α-β)]
cosα·sinβ=0.5[sin(α+β)-sin(α-β)]
cosα·cosβ=0.5[cos(α+β)+cos(α-β)]
sinα·sinβ=- 0.5[cos(α+β)-cos(α-β)]
編輯本段公式推導過程
萬能公式推導
sin2α=2sinαcosα=2sinαcosα/(cos^2(α)+sin^2(α))......*,
(因為cos^2(α)+sin^2(α)=1)
再把*分式上下同除cos^2(α),可得sin2α=2tanα/(1+tan^2(α))
然後用α/2代替α即可。
同理可推導余弦的萬能公式。正切的萬能公式可通過正弦比余弦得到。
三倍角公式推導
tan3α=sin3α/cos3α
=(sin2αcosα+cos2αsinα)/(cos2αcosα-sin2αsinα)
=(2sinαcos^2(α)+cos^2(α)sinα-sin^3(α))/(cos^3(α)
-cosαsin^2(α)-2sin^2(α)cosα)
上下同除以cos^3(α),得:
tan3α=(3tanα-tan^3(α))/(1-3tan^2(α))
sin3α=sin(2α+α)=sin2αcosα+cos2αsinα
=2sinαcos^2(α)+(1-2sin^2(α))sinα
=2sinα-2sin^3(α)+sinα-2sin^3(α)
=3sinα-4sin^3(α)
cos3α=cos(2α+α)=cos2αcosα-sin2αsinα
=(2cos^2(α)-1)cosα-2cosαsin^2(α)
=2cos^3(α)-cosα+(2cosα-2cos^3(α))
=4cos^3(α)-3cosα
即 sin3α=3sinα-4sin^3(α)
cos3α=4cos^3(α)-3cosα
和差化積公式推導
首先,我們知道sin(a+b)=sina*cosb+cosa*sinb,sin(a-b)=sina*cosb-cosa*sinb
我們把兩式相加就得到sin(a+b)+sin(a-b)=2sina*cosb
所以,sina*cosb=(sin(a+b)+sin(a-b))/2
同理,若把兩式相減,就得到cosa*sinb=(sin(a+b)-sin(a-b))/2
同樣的,我們還知道cos(a+b)=cosa*cosb-sina*sinb,cos(a-b)=cosa*cosb+sina*sinb
所以,把兩式相加,我們就可以得到cos(a+b)+cos(a-b)=2cosa*cosb
所以我們就得到,cosa*cosb=(cos(a+b)+cos(a-b))/2
同理,兩式相減我們就得到sina*sinb=-(cos(a+b)-cos(a-b))/2
這樣,我們就得到了積化和差的四個公式:
sina*cosb=(sin(a+b)+sin(a-b))/2
cosa*sinb=(sin(a+b)-sin(a-b))/2
cosa*cosb=(cos(a+b)+cos(a-b))/2
sina*sinb=-(cos(a+b)-cos(a-b))/2
好,有了積化和差的四個公式以後,我們只需乙個變形,就可以得到和差化積的四個公式.
我們把上述四個公式中的a+b設為x,a-b設為y,那麼a=(x+y)/2,b=(x-y)/2
把a,b分別用x,y表示就可以得到和差化積的四個公式:
sinx+siny=2sin((x+y)/2)*cos((x-y)/2)
sinx-siny=2cos((x+y)/2)*sin((x-y)/2)
cosx+cosy=2cos((x+y)/2)*cos((x-y)/2)
cosx-cosy=-2sin((x+y)/2)*sin((x-y)/2)
高中數學三角函式是課本必修幾,高中數學課本的學習順序是什麼?
必修二和四,前面主要介紹誘導公式 三角函式線和應用的,後面主要是三角恒等變換,這部分比較難,公式繁多,但卻易考。高中數學三角函式是課本必修幾 三角函式是高中數學課本必修4的內容。高中數學必修4是高中二年級下學期的課本,由人民教育 e68a8462616964757a686964616f3133343...
高一數學必修四三角函式的,高一數學必修4三角函式
sinb sina b是銳角 高一數學必修4三角函式 三角函式影象平移變換由y sin x的圖象變換出y sin x 的圖象一般有兩個途徑,只有區別開這兩個 途徑,才能靈活進行圖象變換。利用圖象的變換作圖象時,提倡先平移後伸縮,但先伸縮後平移也經常出現無論哪種 變形,請切記每乙個變換總是對字母 x而...
高一數學題三角函式!解答題
1 首先得明確向量的乘法,是將橫座標,縱座標分別相乘,然後把和相加即x1 x2 y1 y2 那麼f x sinxcosx cosx cosx然後二倍角公式逆用sinxcosx 1 2 sin2x公升冪公式 cosx cosx 1 cos2x 2所以f x 1 2 sin2x 1 cos2x 2將1 ...