如何在ecel中用指數函式冪函式對數函式擬合一組

2021-04-17 13:51:25 字數 2335 閱讀 9840

1樓:匿名使用者

例如a列是1,2,3,4,5,6

b列是1,4,9,16,25,36

選定a,b兩列的資料》插入》圖表>>xy散點圖》完成在生產的圖表中,滑鼠靠近某乙個專散點,右鍵》新增趨勢線屬>>型別》選擇"乘冪",再在選項裡面,勾選顯示公式

對數函式,指數函式,冪函式計算公式

2樓:無敵的地雷

對數函式:一般地,函式y=logax(a>0,且a≠1)叫做對數函式,也就是說以冪(真數)為自變數,指數為因變數,底數為常量的函式,叫對數函式。

指數函式:y=a^x,(a>0且a≠1)

冪函式:一般地.形如y=xα(α為有理數)的函式,即以底數為自變數,冪為因變數,指數為常數的函式稱為冪函式。

例如函式y=x0、y=x1、y=x2、y=x-1(注:y=x-1=1/x y=x0時x≠0)等都是冪函式。

3樓:我是hu呀

對數函式計算公式:y=log(a)x,(其中a是常數,a>0且a不等於1),它實際上就是指數函式的反函式,可表示為x=a^y。

指數函式計算公式:一般形式為y=a^x(a>0且≠1) (x∈r)。

冪函式計算公式:一般地,形如y=x^a(a為常數)的函式,即以底數為自變數冪為因變數,指數為常量的函式。

拓展資料:

一般地,對數函式以冪(真數)為自變數,指數為因變數,底數為常量的函式。

如果ax=n(a>0,且a≠1),那麼數x叫做以a為底n的對數,記作x=logan,讀作以a為底n的對數,其中a叫做對數的底數,n叫做真數。

一般地,函式y=logax(a>0,且a≠1)叫做對數函式,也就是說以冪(真數)為自變數,指數為因變數,底數為常量的函式,叫對數函式。

指數函式是重要的基本初等函式之一。一般地,y=a^x函式(a為常數且以a>0,a≠1)叫做指數函式,函式的定義域是 r 。

一般地.形如y=x^α(α為有理數)的函式,即以底數為自變數,冪為因變數,指數為常數的函式稱為冪函式。例如函式y=x0、y=x1、y=x2、y=x-1(注:

y=x-1=1/x y=x0時x≠0)等都是冪函式。

4樓:0風之化身

^對數函式的計算公式:y=log(a)x,(其中a是常數,a>0且a不等於1)

指數函式的計算公式:y=a^x函式(a為常數且以a>0,a≠1)

冪函式的計算公式:y=x^a(a為常數)

拓展資料:

一般地,如果a(a大於0,且a不等於1)的b次冪等於n(n>0),那麼數b叫做以a為底n的對數,記作log an=b,讀作以a為底n的對數,其中a叫做對數的底數,n叫做真數。一般地,函式y=log(a)x,(其中a是常數,a>0且a不等於1)叫做對數函式,它實際上就是指數函式的反函式,可表示為x=a^y。因此指數函式裡對於a的規定,同樣適用於對數函式。

指數函式是數學中重要的函式。應用到值e上的這個函式寫為exp(x)。還可以等價的寫為e,這裡的e是數學常數,就是自然對數的底數,近似等於 2.

718281828,還稱為尤拉數。一般地,y=a^x函式(a為常數且以a>0,a≠1)叫做指數函式,函式的定義域是 r 。

一般的,形如y=x^a(a為實數)的函式,即以底數為自變數,冪為因變數,指數為常量的函式稱為冪函式。例如函式y=x y=x、y=x、y=x(注:y=x=1/x y=x時x≠0)等都是冪函式。

當a取非零的有理數時是比較容易理解的,而對於a取無理數時,初學者則不大容易理解了。

因此,在初等函式裡,我們不要求掌握指數為無理數的問題,只需接受它作為乙個已知事實即可,因為這涉及到實數連續性的極為深刻的知識。

5樓:

lnx+lny=lnxy

lnx-lny=ln(x/y)

lnx^n=nlnx

a^x.a^y=a^(x+y)

a^x/a^y=a^(x-y)

(a^x)n=a^(nx)

(x+y)²=x²+2xy+y²

(x-y)²=x²-2xy+y²

....

6樓:凌璃鳶

y=log(a)x,(其中a是常數,a>0且a不等於1)

y=a^x,(a>0且a≠1)

y=ax(a為實數)

7樓:匿名使用者

有個bai總du結挺zhi

好的dao,回全面答

在excel中如何使用指數函式,冪函式,對數函式擬合一組資料?

函式冪與指數冪區別,冪函式和指數函式區別是什麼

1 自變數x的位置不同。指數函式,自變數x在指數的位置上,y a x a 0,a 不等於 1 冪函式,自變數 x 在底數的位置上,y x a a 不等於 1 a 不等於 1,但可正可負,取不同的值,影象及性質是不一樣的。2 性質不同。指數函式性質 當 a 1 時,函式是遞增函式,且 y 0 當 00...

高一指數函式比較大小的方法,指數函式 對數函式比較大小

1 建構函式法 要點是利用函式的單調性,數的特徵是同底不同指 包括可以化為同底的 若底數是參變數要注意分類討論。2 中間值比較法 用別的數如0或1做橋,數的特徵是不同底不同指。擴充套件資料指數函式的基本性質 1 指數函式的定義域為r,這裡的前提是a大於0且不等於1。對於a不大於0的情況,則必然使得函...

指數函式中指數的取值範圍求法,怎麼求指數函式自變數的取值範圍

反對數函式只對底數a有要求,指數x沒有要求,即x為全體實數。y a x a 0,a 1,x為全體實數。怎麼求指數函式自變數的取值範圍 一.當函式解析 是整式時,自變數的取值範圍是一切實數。二.當函式解析式是分式時,自變數的取值範圍是使分母不為零的一切實數三.當函式解析式是二次根式時,被開方數為一切非...