為什麼f x 在點x o的某一鄰域內具有連續的二階導數lim x 0 f x

2021-03-28 05:47:56 字數 4634 閱讀 6981

1樓:匿名使用者

f(x)=x*f(x)/x

所以lim(x→0)f(x)=lim(x→0)[x*f(x)/x]=lim(x→0)x*lim(x→0)f(x)/x=0*0=0

而f(x)在x=0點二階可導,說明f(x)和f'(x)在x=0點都連續

所以f(0)=lim(x→0)f(x)=0那麼f'(0)=lim(x→0)[f(x)-f(0)]/x=lim(x→0)f(x)/x=0

所以f(0)=f'(0)=0

2樓:匿名使用者

「為什麼f(x)在x0的某一去心鄰域內有界是limf(x)存在的必要條件,而不是充要條件」考慮f(x)在某點處左右極限不相等的情況!必要性:由極限定義:

∵lim(x→x0)f(x)=∞∴對於任意的m>0,存在δ>0,st.0

3樓:匿名使用者

首先,可導必然連續可知,f(x),f'(x)在x=0連續。由limf(x)/x=0,分母趨於0則分子極限為0,即limf(x)=0=f(0),f'(0)=limf(x)-f(0)/x-0=limf(x)/x=0

設f(x)在點x=o的某一鄰域內具有連續的二階導數,且lim(x->0)f(x)/x=0,證明:級數∑(n=1,∞)f(1/n)絕對收斂

4樓:匿名使用者

f(x)在點x=o的某一鄰域內具有連續的二階導數

lim(x->0)f(x)/x=0,則:

f(0)=f'(0)=0

則:lim(x->0)f(x)/x^2=lim(x->0)f'(x)/2x=0

等價於lim(n->∞)f(1/n)*n^2=0,因此

lim(n->∞)∑f(1/n)∞)∑1/n^2絕對收斂

或利用泰勒公式:f(x)=f(0)+f'(0)x+f''(ξ)/2×x^2,ξ介於x與0之間.

f(x)在點x=0處具有連續的二階導數,所以f''(x)有界,即存在正數m,使得|f''(x)|≤m.

因為lim(x→0)f(x)/x=0,所以f(0)=lim(x→0)f(x)=lim(x→0)f(x)/x×x=0,f'(0)=lim(x→0)f(x)/x=0

所以,f(x)=f''(ξ)/2×x^2,從而f(1/n)=f''(ξn)/2×1/n^2,ξn介於0與1/n之間.

所以,|f(1/n)|≤m/2×1/n^2

因為∑(1/n^2)收斂,所以∑|f(1/n)|收斂,得∑f(1/n)絕對收斂.

5樓:

利用泰勒公式:f(x)=f(0)+f'(0)x+f''(ξ)/2×x^2,ξ介於x與0之間.

f(x)在點x=0處具有連續的二階導數,所以f''(x)有界,即存在正數m,使得|f''(x)|≤m.

因為lim(x→0)f(x)/x=0,所以f(0)=lim(x→0)f(x)=lim(x→0)f(x)/x×x=0,f'(0)=lim(x→0)f(x)/x=0

所以,f(x)=f''(ξ)/2×x^2,從而f(1/n)=f''(ξn)/2×1/n^2,ξn介於0與1/n之間.

所以,|f(1/n)|≤m/2×1/n^2

因為∑(1/n^2)收斂,所以∑|f(1/n)|收斂,得∑f(1/n)絕對收斂.

已知f(x)在x=0的某個鄰域內連續,且limx->0f(x)/1-cosx=2,則在x=0處f(x)?

6樓:小小芝麻大大夢

limx->0f(x)/(1-cosx)=2。

∵x->0分母1-cosx→0。

極限=2,f(0)→0。

洛必達法則:

lim(x->0)f(x)/(1-cosx)=lim(x->0)f'(0)/sin0,分母依舊為0,極限存在,f'(0)=0。

繼續求導:=lim(x->0)f''(0)/cos0=2。

∴f''(0)=2>0。

∴f(0)=0為極小值。

7樓:人生如戲

前面直接用洛必達的不對,因為題目沒有提到且沒辦法推出f(x)在x=0的某鄰域內可導,只是在某鄰域內連續而已。本題主要通過函式連續的定義、導數定義、函式極限的保號性、極值定義求解。注意判定極值的時候,不能用極值的三個充分條件判定,因為他們的前提都是在x0的某鄰域內可導。

8樓:星丶

由於1-cosx在x=0的左鄰域與右鄰域內都有limx→0 1-cosx>0 由保號性與連續性可知鄰域內的點有limx→0 f(x)=f(x)>0=f(0) 即f(0)是極小值點

由極小值的定義如下:一般地,設函式f(x)在x0附近有定義,如果對x0附近的所有的點,都有f(x)>f(x0),就說f(x0)是函式f(x)的乙個極小值,記作y極小值=f(x0),x0是極小值點。

看了他們的答案好像都用到了導數,實際這題考察的是極值的原始定義

9樓:低言淺唱情詩

證明:由(x→0)limg(x)/x=-1 (極限為-1,分母趨於0,則分子必趨於0)

可知(x→0)limg(x)=0 即g(0)=0於是(x→0)lim[g(x)-g(0)]/(x-0)=-1則g(x)在該鄰域內可導且g'(0)=-1(x→0)limf(x)/g²(x)=2

因為(x→0)limg²(x)=0

則(x→0)limf(x)=0

f(0)=0

對(x→0)limf(x)/g²(x)=2進行變形(x→0)limf(x)/g²(x)

=(x→0)lim[f(x)/x][x²/g(x)]=(x→0)lim[f(x)/x²]•(x→0)limx²/g(x) (變成兩個極限之積,並對右邊的極限用洛必達法則)

=(x→0)lim[f(x)/x²]•(x→0)limx/g(x)•(x→0)lim1/g'(x)

=(x→0)lim[f(x)/x²]•(-1)•(-1)=2因此f(x)=2x²+o(x)

於是可以得到(x→0)limf(x)/x=0即f'(0)=0

10樓:匿名使用者

前面所bai

有用洛必達的也真是不du

怕誤人子弟啊。

zhi。這題考的是定義啊,偏偏dao正版

確答案放在了最下面。

連續卻未告權知可導,洛洛洛,泰勒都要哭了誒。下面答案中有用定義做的建議提到推薦答案,答案中1-cosx用了泰勒近似1/2x^2+o(x^2)

11樓:緊抱著大神腿

首先 有f(0) = 0; 等價來無窮小 1-cosx ~1/2x2

lim x->0 (f(x)-f(0))/(x-0) = lim x->0 x * f(x)/x2 = 0 所以f'(0) = 0;

lim x->0 ((f(x)-f(0))/(x-0) -f'(0))/(x-0) = f''(x) = lim x->0 f(x) /x2 =1>0;

顯然自因為bai f'(0) = 0; f''(0)>0。所以在x=0處有極小值du!

純手打,有bug的地

zhi方請提出,水平有限有dao誤地方請見諒 謝謝!

設f(x)在點x=0的某一鄰域內具有二階連續導數,且limx→0f(x)x=0,證明級數∞n=1f(1n)絕對收斂

12樓:遺棄的紙湮

∵f(x)在點x=0的某一鄰域內具有二階連續導數,即f(x),f'(x),f''(x)在x=0的某一鄰域均連續

且:lim

x→0f(x)x=0

∴f(x)=f(0)=0 lim

x→0f(x)?f(0)x=0

∴f』(0)=0

∴lim

x→0f(x)

x=lim

x→0f』(x)

2x=lim

x→0f』(x)?f』(0)

2x=1

2f』』(0)

∴lim

n→∞|f(1n)

(1n)|是一常數

∴由比值判別法可知原級數絕對收斂

設f(x)在x=0的某一鄰域內具有二階連續導數,且lim(x→0)f(x)/x=0,證明級數f

13樓:小六的煩惱

f ′ (a)=0,f ′′ (a)≠0 只是f(x) 在x=a 處取極值的充分條件,非必要條件.

比如f(x)=x^4 ,有f ′ (0)=f ′′ (0)=0 但在 x=0 處顯然是取極小值.

就這題而言:

因lim(x→0) f ′′ (x) / |x| =1 ,由區域性保號性有,

存在一去心鄰域u° (0,δ) ,使得對在這個去心鄰域內有 f ′′ (x) / |x| > 1 / 2

所以有f ′′ (x)> |x| / 2 >0 ,而由連續性有f ′′ (0)=0

去是,在鄰域u°(0,δ) 內有f ′′ (x)≥0 ,且只x=0 處f ′′ (x)=0

於是f ′′ (x) 在鄰域u°(0,δ) 內嚴格單增

於是在該鄰域內有xf ′ (0)=0 ,

導數是由負變正,所以取極小值.

設f(x)在x=0的某一鄰域內具有二階連續導數,且limf(x)/x=0,證明級數根號下nd(1/

14樓:匿名使用者

對c來說,存在δ,使當|x|<δ時,|f(x)/x^2-c|所以當n足夠大時,1/n<δ,所以

右邊為通項的級數是收斂的,所以原級數絕對收斂

某一點極限存在的條件是什麼,函式在某一點極限存在的充要條件是什麼

某一點極限存在的條件是 函式f x 的左右極限都存在且相等。極限是微積分中的基礎概念,它指的是變數在一定的變化過程中,從總的來說逐漸穩定的這樣一種變化趨勢以及所趨向的值 極限值 函式在某一點極限存在的充要條件是什麼 函式在某一點極限存在的充要條件是函式左極限和右極限在某點相等。如果左右極限不相同 或...

求解,為什麼函式在某一點處有n階導數,那麼必存在這一點的

這是顯然的,高階可導,低階必可導。如果函式在某一點處二階導數存在那麼在這一點的乙個領域內一階導數一定存在嗎 是,二階導數的定義要用到在鄰域內的一階導數,因此必須要存在一階導數。一定存在啊,二階導數是一階導數求導得到的,二階導存在,一階導數必然存在 對的,因為其二階導數存在,故可證明其一階導數在此處鄰...

為什麼說函式在某一點左右導數都存在,則一定連續

我非公式化的抽象的講一下,以便後人理解。導數就是函式的切線,若該點處不連續,則該點為端點,端點無切線,也就是沒導數。書上定理 可導一定連續,連續不一定可導。左右導數不相等認為是不可導。左導左連續,右導右連續嘛,說了可導一定連續,又怎能說不可能一定不連續呢,y x 在x 0處不可導,但左右導數都存在,...