1樓:devilaries白羊
上面說沒意義那個你可真skr小機靈鬼。根軸了解一下嘍。這個方程最終是一條直線,幾何意義是該直線上任意乙個點關於這兩個圓的圓冪相等,稱為這兩個圓的根軸,常在平面幾何中研究。
2樓:匿名使用者
什麼都不是,就一條直線,介於兩個圓之間,沒有多少實際意義
已知兩圓內含,求兩圓方程相減所得直線方程的幾何意義
3樓:匿名使用者
所得的直線為兩圓的根軸,即到兩圓冪相等的點的集合
無論兩圓什麼位置關係,方程相減所得的直線都是兩個圓的根軸
當兩圓相交時是過兩圓交點的直線,這個也是這兩個圓的根軸
兩個相交圓的方程聯立,為什麼得到一條直線?
4樓:
這主要是圓的方程決定的。圓的標準方程中二次項只有x^2和y^2,並且係數都是1,所以兩個圓方程相減後變成x和y的二元一次函式,顯然是一條直線。
又,因為圓的交點同時滿足兩個圓方程,所以也在這條直線上,因此該直線過交點。可以從圓系理解。
如果兩圓不相交,那麼相減也是一條直線,好象沒什麼意義。
5樓:匿名使用者
兩個相交圓的方程聯立,如果一直解下去,是可以得到兩組解的.
沒有直接得到兩組解而是一條直線方程是因為沒有解到最後,所得到的直線方程必是相交弦所在的直線的方程.
6樓:來也無影去無蹤
你肯定是用兩個方程相減了,那樣得到的是交線的方程,要再次代入前面兩個方程中的任意乙個才能得到解集啊
比如說你解二元一次方程組,做一次差就能得到解集麼?沒那麼快的!
7樓:匿名使用者
因為聯立以後得到的是兩圓的交點弦方程,而兩個交點恰好是交點弦(直線)的其中兩個解。我用手機給你打的,體諒體諒呵呵。
8樓:我是後輩
因為兩個圓相交能得到兩個交點,
而兩點確定一條直線,兩個圓的方程相減就得到了所需直線方程
這個問題在我高中時也遇到了,都是我的親身體驗
9樓:匿名使用者
2個相交圓,只有二個交點.2點之間有且僅有一條直線
10樓:匿名使用者
這是處理方法造成的 結果得出的交點連線方程
誰知道圓的極座標方程的公式
11樓:是月流光
圓的極座標公式:ρ²=x²+y²,x=ρcosθ,y=ρsinθ tanθ=y/x,(x不為0)
1、如果半徑為r的圓的圓心在直角座標的x=r,y=0點,即(r,0),也就是極座標的ρ=r,θ=0,即(r,0)點:那麼該圓的極座標方程為:ρ=2rcosθ。
2、如果圓心在x=r,y=r,或在極座標的(√2 r,π/4),該圓的極座標方程為:ρ^2-2rρ(sinθ+cosθ)+r^2=0。
3、如果圓心在x=0,y=r,該圓的極座標方程為:ρ=2rsinθ。
4、圓心在極座標原點:ρ=r(θ任意)。
拓展內容:
在數學中,極座標系是乙個二維座標系統。該座標系統中任意位置可由乙個夾角和一段相對原點—極點的距離來表示。
極座標系的應用領域十分廣泛,包括數學、物理、工程、航海、航空以及機械人領域。在兩點間的關係用夾角和距離很容易表示時,極座標系便顯得尤為有用;而在平面直角座標系中,這樣的關係就只能使用三角函式來表示。
對於很多態別的曲線,極座標方程是最簡單的表達形式,甚至對於某些曲線來說,只有極座標方程能夠表示。
12樓:_kxin丶
圓的極座標方程公式為:
ρ²-2aρcosθ-2bρsinθ+a²+b²=r²
a和b分別是此圓的座標,r為半徑,帶入上述方程,即可求出此園的極座標方程。
擴充套件內容:
極座標與直角座標的轉換:
極座標轉直角座標:x=ρcosθ,y=ρsinθ。
直角座標轉極座標:ρ = sqrt(x² + y²),θ= arctan y/x。
在 x = 0的情況下:若 y 為正數 θ = 90° (π/2 radians); 若 y 為負,則 θ = 270° (3π/2 radians)。
極座標方程:
在數學中,極座標系是乙個二維座標系統。該座標系統中任意位置可由乙個夾角和一段相對原點—極點的距離來表示。極座標系的應用領域十分廣泛,包括數學、物理、工程、航海、航空以及機械人領域。
在兩點間的關係用夾角和距離很容易表示時,極座標系便顯得尤為有用;而在平面直角座標系中,這樣的關係就只能使用三角函式來表示。對於很多態別的曲線,極座標方程是最簡單的表達形式,甚至對於某些曲線來說,只有極座標方程能夠表示。
13樓:冬雲
圓的極座標方程是什麼?
14樓:匿名使用者
一般我平時見到的圓的方程是指在平面直角座標下的圓的方程除了平面直角座標,還有極座標,相應的圓在極座標也有對應的方程兩者可以互相轉化
轉化公式是:ρ²=x²+y²,x=ρcosθ,y=ρsinθ比如圓(x-1)²+y²=1轉化為極座標
(ρcosθ-1)²+(ρsinθ)²=1即ρ²-2ρcosθ=0
15樓:瞑粼
^設圓心m(ρ',θ') 半徑r 極點o
圓上任意一點p(ρ,θ)
δopm中
由餘弦定理
|om|^2+|op|^2-2|om|*|op|*cos(θ-θ')=|pm|^2
(ρ')^2+ρ^2-2ρρ'cos(θ-θ')=r^2
16樓:匿名使用者
這個數學書上會有具體的公式的,看看你的高中數學課本。
17樓:文心雕龍呃呃
pcosa=x psina=y x.x+y.y=p.p
18樓:匿名使用者
x=pcosθ, y=psinθ
橢圓的標準方程是什麼?
19樓:之何勿思
共分兩種情況:
當焦點在x軸時,橢圓的標準方程是:x^2/a^2+y^2/b^2=1,(a>b>0);
當焦點在y軸時,橢圓的標準方程是:y^2/a^2+x^2/b^2=1,(a>b>0); 其中a^2-c^2=b^2
1、如果在乙個平面內乙個動點到兩個定點的距離的和等於定長,那麼這個動點的軌跡叫做橢圓。
2、橢圓的影象如果在直角座標系中表示,那麼上述定義中兩個定點被定義在了x軸。若將兩個定點改在y軸,可以用相同方法求出另乙個橢圓的標準方程:
3、在方程中,所設的稱為長軸長,稱為短軸長,而所設的定點稱為焦點,那麼稱為焦距。在假設的過程中,假設了,如果不這樣假設,會發現得不到橢圓。當時,這個動點的軌跡是乙個線段;當時,根本得不到實際存在的軌跡,而這時,其軌跡稱為虛橢圓。
20樓:匿名使用者
橢圓的標
準方程有兩種,取決於焦點所在的座標軸:
1)焦點在x軸時,標準方程為:x²/a²+y²/b²=1 (a>b>0)
2)焦點在y軸時,標準方程為:y²/a²+x²/b²=1 (a>b>0)
橢圓是平面上到兩定點的距離之和為常值的點之軌跡, 也可定義為到定點距離與到定直線間距離之比為乙個小於1的常值的點之軌跡。它是圓錐曲線的一種,即圓錐與平面的截線。
基本性質:
1、範圍:焦點在x軸上-a≤x≤a,-b≤y≤b;焦點在y軸上-b≤x≤b, -a≤y≤a
2、對稱性:關於x軸對稱,y軸對稱,關於原點中心對稱。
3、頂點:(a,0)(-a,0)(0,b)(0,-b)
4、離心率:e=c/a或 e=√(1-b^2/a²)
5、離心率範圍:06、離心率越大橢圓就越扁,越小則越接近於圓。
7、焦點(當中心為原點時):(-c,0),(c,0)或(0,c),(0,-c)
9、p為橢圓上的一點,a-c≤pf1(或pf2)≤a+c。
10.橢圓的周長等於特定的正弦曲線在乙個週期內的長度。
21樓:大倫大倫大倫
橢圓的標準方程共分兩種情況[1]:
當焦點在x軸時,橢圓的標準方程是:x^2/a^2+y^2/b^2=1,(a>b>0);
當焦點在y軸時,橢圓的標準方程是:y^2/a^2+x^2/b^2=1,(a>b>0);
其中a^2-c^2=b^2
推導:pf1+pf2>f1f2(p為橢圓上的點 f為焦點)
中文名橢圓標準方程
外文名standard equation of the ellipse
別稱線條
表示式x^2/a^2+y^2/b^2=1
提出者數學家
方程推導
設橢圓的兩個焦點分別為f1,f2,它們之間的距離為2c,橢圓上任意一點到f1,f2的距離和為2a(2a>2c)。
以f1,f2所在直線為x軸,線段f1f2的垂直平分線為y軸,建立直角座標系xoy,則f1,f2的座標分別為(-c,0),(c,0)。
設m(x,y)為橢圓上任意一點,根據橢圓定義知
|mf1|+|mf2|=2a,(a>0)
即將方程兩邊同時平方,化簡得
兩邊再平方,化簡得又,設
,得兩邊同除以 ,得
這個形式是橢圓的標準方程。
通常認為圓是橢圓的一種特殊情況[2] 。
非標準方程
其方程是二元二次方程,可以利用二元二次方程的性質進行計算,分析其特性[3] 。
幾何性質
x,y的範圍
當焦點在x軸時 -a≤x≤a,-b≤y≤b
當焦點在y軸時 -b≤x≤b,-a≤y≤a
對稱性不論焦點在x軸還是y軸,橢圓始終關於x/y/原點對稱。
頂點:焦點在x軸時:長軸頂點:(-a,0),(a,0)
短軸頂點:(0,b),(0,-b)
焦點在y軸時:長軸頂點:(0,-a),(0,a)
短軸頂點:(b,0),(-b,0)
注意長短軸分別代表哪一條軸,在此容易引起混亂,還需數形結合逐步理解透徹[4] 。
焦點:當焦點在x軸上時焦點座標f1(-c,0)f2(c,0)
當焦點在y軸上時焦點座標f1(0,-c)f2(0,c)
計算方法
((其中 分別是橢圓的長半軸、短半軸的長,可由圓的面積可推導出來)或 (其中 分別是橢圓的長軸,短軸的長)[5] 。
圓和橢圓之間的關係:
橢圓包括圓,圓是特殊的橢圓。
參考資料
[1] 曹才翰.中國中學教學百科全書:數學卷[m].瀋陽:瀋陽出版社
[2] 沈金興. 數學文化視角下的橢圓標準方程推導[j]. 數學通訊, 2015(8):
22樓:你轉身的笑
你可以在丟其他瀏覽器上都可以搜得到。
23樓:匿名使用者
x/a²+y/b²=1
24樓:大神00002摩羯
橢圓的基本定義應該為平面上到兩點距離之和為定值的點的集合
如圖,在直角平面座標系中,abc的頂點座標分別是a
1 利用交點式設拋物線為 y a x 1 x 3 將c 0,3 代入得,3 a 0 1 0 3 解得a 1再將a 1代入得 y x 1 x 3 y x 2 2x 3,所以對稱軸是x b 2a 1 設直線bc的解析式為y kx b,將b 3,0 c 0,3 代入得,0 3k b,3 b解得k 1,b ...
如圖,在平面直角座標系中,點A座標為(8,0),點B座標為(0,6),C是線段AB的中點,點P沿A O B線路運
解 存在這樣的p點 理由如下 aob 90 oa 8,ob 6 ab 10 c是線段ab的中點,ac 5 如果p與b對應,那麼 pac bao,pa ba ac ao,ap 254,op oa ap 74,p 74,0 或如果p與o對應,那麼 pac oab pa oa ac ab,pa 4,op ...
在平面直角座標系xOy中,已知動點Px,yy0到點
由題意可得 pf x,y 2 由 pf y 2 及 y 0,得 x y 2 y 2,整理得 x2 8y y 0 即為所求動點p的軌跡e的方程 設a x1,y1 b x2,y2 由題意,知直線ab的斜率必定存在,故設直線ab的斜率為k,方程為 y kx b 聯立y kx b x 8y 可得 x2 8k...