怎麼學好代數式,有什麼好方法,怎麼學好代數式,有什麼方法

2021-03-04 06:56:20 字數 4903 閱讀 3629

1樓:匿名使用者

代數式:由數和表示數的字母經有限次加、減、乘、除、乘方和開方等代數運算所得的式子。例如:ax+2b,-2/3等。

代數是研究數字和文字的代數運算理論和方法,更確切的說,是研究實數和複數,以及以它們為係數的多項式的代數運算理論和方法的數學分支學科。 初等代數是更古老的算術的推廣和發展。在古代,當算術裡積累了大量的,關於各種數量問題的解法後,為了尋求有系統的、更普遍的方法,以解決各種數量關係的問題,就產生了以解方程的原理為中心問題的初等代數。

代數是由算術演變來的,這是毫無疑問的。至於什麼年代產生的代數學這門學科,就很不容易說清楚了。比如,如果你認為「代數學」是指解bx+k=0這類用符號表示的方程的技巧。

那麼,這種「代數學」是在十六世紀才發展起來的。

如果我們對代數符號不是要求象現在這樣簡練,那麼,代數學的產生可上溯到更早的年代。西方人將西元前三世紀古希臘數學家刁藩都看作是代數學的鼻祖。而在中國,用文本來表達的代數問題出現的就更早了。

「代數」作為乙個數學專有名詞、代表一門數學分支在我國正式使用,最早是在2023年。那年,清代數學家裡李善蘭和英國人韋列亞力共同翻譯了英國人棣麼甘所寫的一本書,譯本的名稱就叫做《代數學》。當然,代數的內容和方法,我國古代早就產生了,比如《九章算術》中就有方程問題。

初等代數的中心內容是解方程,因而長期以來都把代數學理解成方程的科學,數學家們也把主要精力集中在方程的研究上。它的研究方法是高度計算性的。

要討論方程,首先遇到的乙個問題是如何把實際中的數量關係組成代數式,然後根據等量關係列出方程。所以初等代數的乙個重要內容就是代數式。由於事物中的數量關係的不同,大體上初等代數形成了整式、分式和根式這三大類代數式。

代數式是數的化身,因而在代數中,它們都可以進行四則運算,服從基本運算定律,而且還可以進行乘方和開方兩種新的運算。通常把這六種運算叫做代數運算,以區別於只包含四種運算的算術運算。

在初等代數的產生和發展的過程中,通過解方程的研究,也促進了數的概念的進一步發展,將算術中討論的整數和分數的概念擴充到有理數的範圍,使數包括正負整數、正負分數和零。這是初等代數的又一重要內容,就是數的概念的擴充。

有了有理數,初等代數能解決的問題就大大的擴充了。但是,有些方程在有理數範圍內仍然沒有解。於是,數的概念在一次擴充到了實數,進而又進一步擴充到了複數。

那麼到了複數範圍內是不是仍然有方程沒有解,還必須把複數再進行擴充套件呢?數學家們說:不用了。

這就是代數裡的乙個著名的定理—代數基本定理。這個定理簡單地說就是n次方程有n個根。2023年12月15日瑞士數學家尤拉曾在一封信中明確地做了陳述,後來另乙個數學家、德國的高斯在2023年給出了嚴格的證明。

把上面分析過的內容綜合起來,組成初等代數的基本內容就是:

三種數——有理數、無理數、複數

三種式——整式、分式、根式

中心內容是方程——整式方程、分式方程、根式方程和方程組。

初等代數的內容大體上相當於現代中學設定的代數課程的內容,但又不完全相同。比如,嚴格的說,數的概念、排列和組合應歸入算術的內容;函式是分析數學的內容;不等式的解法有點像解方程的方法,但不等式作為一種估算數值的方法,本質上是屬於分析數學的範圍;座標法是研究解析幾何的……。這些都只是歷史上形成的一種編排方法。

初等代數是算術的繼續和推廣,初等代數研究的物件是代數式的運算和方程的求解。代數運算的特點是只進行有限次的運算。全部初等代數總起來有十條規則。

這是學習初等代數需要理解並掌握的要點。

這十條規則是:

五條基本運算律:加法交換律、加法結合律、乘法交換律、乘法結合律、分配律;

兩條等式基本性質:等式兩邊同時加上乙個數,等式不變;等式兩邊同時乘以乙個非零的數,等式不變;

三條指數律:同底數冪相乘,底數不變指數相加;指數的乘方等於底數不變指數想乘;積的乘方等於乘方的積。

初等代數學進一步的向兩個方面發展,一方面是研究未知數更多的一次方程組;另一方面是研究未知數次數更高的高次方程。這時候,代數學已由初等代數向著高等代數的方向發展了。

怎麼學好代數式,有什麼方法?

2樓:匿名使用者

代數式:由數和表示數的字母經有限次加、減、乘、除、乘方和開方等代數運算所得的式子。例如:ax+2b,-2/3等。

代數是研究數字和文字的代數運算理論和方法,更確切的說,是研究實數和複數,以及以它們為係數的多項式的代數運算理論和方法的數學分支學科。 初等代數是更古老的算術的推廣和發展。在古代,當算術裡積累了大量的,關於各種數量問題的解法後,為了尋求有系統的、更普遍的方法,以解決各種數量關係的問題,就產生了以解方程的原理為中心問題的初等代數。

代數是由算術演變來的,這是毫無疑問的。至於什麼年代產生的代數學這門學科,就很不容易說清楚了。比如,如果你認為「代數學」是指解bx+k=0這類用符號表示的方程的技巧。

那麼,這種「代數學」是在十六世紀才發展起來的。

如果我們對代數符號不是要求象現在這樣簡練,那麼,代數學的產生可上溯到更早的年代。西方人將西元前三世紀古希臘數學家刁藩都看作是代數學的鼻祖。而在中國,用文本來表達的代數問題出現的就更早了。

「代數」作為乙個數學專有名詞、代表一門數學分支在我國正式使用,最早是在2023年。那年,清代數學家裡李善蘭和英國人韋列亞力共同翻譯了英國人棣麼甘所寫的一本書,譯本的名稱就叫做《代數學》。當然,代數的內容和方法,我國古代早就產生了,比如《九章算術》中就有方程問題。

初等代數的中心內容是解方程,因而長期以來都把代數學理解成方程的科學,數學家們也把主要精力集中在方程的研究上。它的研究方法是高度計算性的。

要討論方程,首先遇到的乙個問題是如何把實際中的數量關係組成代數式,然後根據等量關係列出方程。所以初等代數的乙個重要內容就是代數式。由於事物中的數量關係的不同,大體上初等代數形成了整式、分式和根式這三大類代數式。

代數式是數的化身,因而在代數中,它們都可以進行四則運算,服從基本運算定律,而且還可以進行乘方和開方兩種新的運算。通常把這六種運算叫做代數運算,以區別於只包含四種運算的算術運算。

在初等代數的產生和發展的過程中,通過解方程的研究,也促進了數的概念的進一步發展,將算術中討論的整數和分數的概念擴充到有理數的範圍,使數包括正負整數、正負分數和零。這是初等代數的又一重要內容,就是數的概念的擴充。

有了有理數,初等代數能解決的問題就大大的擴充了。但是,有些方程在有理數範圍內仍然沒有解。於是,數的概念在一次擴充到了實數,進而又進一步擴充到了複數。

那麼到了複數範圍內是不是仍然有方程沒有解,還必須把複數再進行擴充套件呢?數學家們說:不用了。

這就是代數裡的乙個著名的定理—代數基本定理。這個定理簡單地說就是n次方程有n個根。2023年12月15日瑞士數學家尤拉曾在一封信中明確地做了陳述,後來另乙個數學家、德國的高斯在2023年給出了嚴格的證明。

把上面分析過的內容綜合起來,組成初等代數的基本內容就是:

三種數——有理數、無理數、複數

三種式——整式、分式、根式

中心內容是方程——整式方程、分式方程、根式方程和方程組。

初等代數的內容大體上相當於現代中學設定的代數課程的內容,但又不完全相同。比如,嚴格的說,數的概念、排列和組合應歸入算術的內容;函式是分析數學的內容;不等式的解法有點像解方程的方法,但不等式作為一種估算數值的方法,本質上是屬於分析數學的範圍;座標法是研究解析幾何的……。這些都只是歷史上形成的一種編排方法。

初等代數是算術的繼續和推廣,初等代數研究的物件是代數式的運算和方程的求解。代數運算的特點是只進行有限次的運算。全部初等代數總起來有十條規則。

這是學習初等代數需要理解並掌握的要點。

這十條規則是:

五條基本運算律:加法交換律、加法結合律、乘法交換律、乘法結合律、分配律;

兩條等式基本性質:等式兩邊同時加上乙個數,等式不變;等式兩邊同時乘以乙個非零的數,等式不變;

三條指數律:同底數冪相乘,底數不變指數相加;指數的乘方等於底數不變指數想乘;積的乘方等於乘方的積。

初等代數學進一步的向兩個方面發展,一方面是研究未知數更多的一次方程組;另一方面是研究未知數次數更高的高次方程。這時候,代數學已由初等代數向著高等代數的方向發展了。

3樓:匿名使用者

《代數式》是學好初中代數的起點和重要內容。

首先要理解代數式的概念:

(1)抽象理解:用運算符號把數與表示數的字母鏈結而成的式子;

(2)形象理解:象「用膠水把郵票貼上在信封上」那樣;

(3)單獨的乙個數或乙個字母也是代數式的理解:

因為字母x的零次方為1,所以2=2乘x的零次方,是代數式因為字母a=1乘a,所以也是代數式。

2.關於列代數式的兩個基本功——「翻譯」

(2)由代數式說意義。熟悉常見的意義,如:平方和、立方差、負倒數等等。

3.對於求代數式的值的理解。

(1)當字母取乙個值時,代數式可能最多有乙個值與之對應。

如當x=0時,1/x無意義,當x=2時,1/x=1/2.

(2)代數式的值可能不至乙個。

因為字母可能取很多的值,所以對應的代數式的值必然也有很多。

(3)在使代數式有意義的情況下,字母所取的值不同,代數式的值未必不同。

如當x=2時,x²=4,當x=-2時,x²=4。

(4)一般地,字母的取值有乙個範圍,即能使代數式有意義的那個範圍。

(5)只含有乙個字母的代數式叫做一元代數式,其字母的取值範圍很重要。

理解後,為學習後面的函式打下基礎。

如何學好代數?

4樓:匿名使用者

首先要有興趣,興趣從哪來?從一種優越感而來。其次要總結,先把知識點總結一遍,初高中的代數都不會很難,知識點都不很多,一張八開的紙足夠把所有知識點連寫帶圖弄下來,一定要自己抄寫,要條理。

抄一遍的目的不只是記一遍,更在於方便做題的時候查閱。然後就可以做題了,不管什麼題,都拿來做練習,遇到不會的,先搞清是思路問題,還是知識點問題,思路問題找老師討論,知識點問題就用得上那張總結的八開紙了,不用擔心還沒記住,照著用就是了。這樣下來,做得多了就會知道知識點都怎麼用了,思路也就開啟了,有時候,不由自主的一道題會發現可以用幾種方法做出來,這就是優越感,會到前面,你就發現,你的興趣跟著就來了。

呵呵,這是我的經驗。希望對你有所啟發不要喪氣!!加油!!!!

怎麼樣學好物理??怎樣學好物理?有什麼方法嗎?

1 學好物理概念和規律。要分清概念和規律的不同,對概念和規律的理解要深刻,記憶要非常準確,不能只是大概就夠。2 做好物理實驗。物理是一門實驗科學,一定要認真準備,實驗中認真觀察 實驗後認真分析。3 做好物理作業。作業是檢驗你對概念和規律的掌握情況的,不會做題不要覺得是題目有什麼問題或是難度太大,其實...

怎樣學好語數外三科呢 有什麼好方法

語文 不是死記硬背,要掌握好方法,平時多讀課外書,然後晚上預習明天的課程,古文要盡可能的背過和了解它,一定要多讀好書,讀書破萬捲,下筆如有神。數學,就是多做題,但是不要做沒用的題 比如 像題海,做多了反而會越來越學不會 只要把今天老師講的掌握了,都會了,我認為不必要題海戰術。外語 其實我也不太掌握 ...

親們都是如何把這英語學好的。。有什麼好的方法都拿出來曬曬啊

不知道你是在上初中高中還是大學?總之呢,英語是要日積月累的,每天要堅持學,兩個小時,如果基礎不好,就要再多花些時間,從單詞和語法入手,每天要堅持背單詞,堅持學習語法,如果還是在考試階段,那每天還要聽聽力,記住要去買練習題,要買那種答案詳細的,堅持下去就會成功的!看電影學英文。在完成平時正常的英語訓練...