兀兀是不是有理數,是不是有理數?

2021-03-04 06:51:43 字數 5550 閱讀 1879

1樓:匿名使用者

派是無理數,

派-派的結果是0,

是有理數。

2樓:愛玩爐石

π➖π結果是0,0是整數所以答肯定是有理數,並不是帶π的式子都是無理數,而是還是看計算,不能把數學學死了。

「π」是不是有理數?

3樓:阿明

π不是有理數。

因為,根據有理數的定義:

有理數是乙個整數a和乙個正整數b的比,例如3/8,通則為a/b。有理數是整數和分數的集合,整數也可看做是分母為一的分數。有理數的小數部分是有限或為無限迴圈的數。

而π=3.1415926...是無限不迴圈小數,不在有理數的範圍。

4樓:匿名使用者

兀不是有理

數,因為兀=3.1415926……它是無限不迴圈小數。

然而有理數的概念是:有理數分為正有理數,負有理數,0。

有理數都可以化為小數,其中整數可以看作小數點後面是零的小數,只要是無限迴圈小數的都叫有理數。如:3.12121212121212……

5樓:叫那個不知道

π不是有理數。有理數是「數與代數」領域中的重要內容之一,在現實生活中有廣泛的應用,是繼續學習實數、代數式、方程、不等式、直角座標系、函式、統計等數學內容以及相關學科知識的基礎。

數學上,有理數是乙個整數a和乙個正整數b的比,例如3/8,通則為a/b。0也是有理數。有理數是整數和分數的集合,整數也可看做是分母為一的分數。

有理數的小數部分是有限或為無限迴圈的數。不是有理數的實數稱為無理數,即無理數的小數部分是無限不迴圈的數。

擴充套件資料

π是個無理數,即不可表達成兩個整數之比,是由瑞士科學家約翰·海因里希·蘭伯特於2023年證明的。 2023年,林德曼(ferdinand von lindemann)更證明了π是超越數,即π不可能是任何整係數多項式的根。

圓周率的超越性否定了化圓為方這古老尺規作圖問題的可能性,因所有尺規作圖只能得出代數數,而超越數不是代數數。

2023年,國際數學協會正式宣布,將每年的3月14日設為國際數學節,**則是中國古代數學家祖沖之的圓周率。

國際圓周率日可以追溯至2023年3月14日,舊金山科學博物館的物理學家larry shaw,他組織博物館的員工和參與者圍繞博物館紀念碑做3又1/7圈(22/7,π的近似值之一)的圓周運動,並一起吃水果派。之後,舊金山科學博物館繼承了這個傳統,在每年的這一天都舉辦慶祝活動。

2023年,美國眾議院正式通過一項無約束力決議,將每年的3月14日設定為「圓周率日」。決議認為,「鑑於數學和自然科學是教育當中有趣而不可或缺的一部分,而學習有關π的知識是一教孩子幾何、吸引他們學習自然科學和數學的迷人方式……π約等於3.14,因此3月14日是紀念圓周率日最合適的日子。」

6樓:端木半青革越

不是,π是無限不迴圈小數,是無理數,1/3是無限迴圈小數,是有理數。這主要是無限迴圈和無限不迴圈的區別。迴圈是有理的,可推導;不迴圈是無理的,不可推導的

7樓:建昆綸殳順

從小數講,無限不迴圈小數是無理數。所以π/7是無理數;

從分數角度講,任何乙個有理數都能化為既約分數﹙分子和分母只有公約數1也叫最簡分數﹚,1/3本身就是乙個最簡分數,所以它是有理數。π本身是無理數,它與7的商也是無限不迴圈小數,所以它是無理數。

8樓:老登高

π不是有理數,不能表達成分數形式。

π是無理數,屬於無限不迴圈小數。

而且π還是超越數,也就是說不屬於代數數,是不滿足任乙個整係數代數方程anxn+an-1xn-1+…+a1x+a0=0( an≠0,n≥1 )的數。

要知道所有超越數都是無理數,但大部分無理數都不是超越數。

9樓:班如琴飛星

π限迴圈數所

理數哦師講

π是不是有理數 為什麼

10樓:叫那個不知道

π不是有理數。有理數是「數與代數」領域中的重要內容之一,在現實生活中有廣泛的應用,是繼續學習實數、代數式、方程、不等式、直角座標系、函式、統計等數學內容以及相關學科知識的基礎。

數學上,有理數是乙個整數a和乙個正整數b的比,例如3/8,通則為a/b。0也是有理數。有理數是整數和分數的集合,整數也可看做是分母為一的分數。

有理數的小數部分是有限或為無限迴圈的數。不是有理數的實數稱為無理數,即無理數的小數部分是無限不迴圈的數。

擴充套件資料

π是個無理數,即不可表達成兩個整數之比,是由瑞士科學家約翰·海因里希·蘭伯特於2023年證明的。 2023年,林德曼(ferdinand von lindemann)更證明了π是超越數,即π不可能是任何整係數多項式的根。

圓周率的超越性否定了化圓為方這古老尺規作圖問題的可能性,因所有尺規作圖只能得出代數數,而超越數不是代數數。

2023年,國際數學協會正式宣布,將每年的3月14日設為國際數學節,**則是中國古代數學家祖沖之的圓周率。

國際圓周率日可以追溯至2023年3月14日,舊金山科學博物館的物理學家larry shaw,他組織博物館的員工和參與者圍繞博物館紀念碑做3又1/7圈(22/7,π的近似值之一)的圓周運動,並一起吃水果派。之後,舊金山科學博物館繼承了這個傳統,在每年的這一天都舉辦慶祝活動。

2023年,美國眾議院正式通過一項無約束力決議,將每年的3月14日設定為「圓周率日」。決議認為,「鑑於數學和自然科學是教育當中有趣而不可或缺的一部分,而學習有關π的知識是一教孩子幾何、吸引他們學習自然科學和數學的迷人方式……π約等於3.14,因此3月14日是紀念圓周率日最合適的日子。」

11樓:匿名使用者

^π不是有理數.

證明:假設pi=a/b(即假設pi是有理數),我們定義(對某個n):

f(x) = (x^n) * (a-bx)^n / n!

f(x) = f(x) + ... + (-1)^j * f^(2j)(x) + ... + (-1)^n * f^(2n)(x)

這裡f^(2j)是f的2j次導數.

於是f和f有如下性質(都很容易驗證):

1)f(x)是乙個整係數多項式除以n!。

2)f(x) = f(pi - x)

3)f在(0,pi)區間上嚴格遞增,並且x趨於0時f(x)趨於0,

x趨於pi時f(x)趨於pi^n * a^n / n!

4)對於0 <= j < n, f的j次導數在0和pi處的值是0。

5)對於j >= n, f的j次導數在0和pi處是整數(由1)可知)。

6)f(0)和f(pi)是整數(由4),5)可知)。

7)f + f'' = f

8)(f'·sin - f·cos)' = f·sin (由7)可知)。

這樣,對f·sin從0到pi進行定積分,就是

(f'(pi)sin(pi)-f(pi)cos(pi)) - (f'(0)sin(0)-f(0)cos(0))

=f(pi)+f(0)

由6)可知這是個整數。

問題在於如果把n取得很大,由3)可知f·sin從0到pi進行定積分必須嚴格大於0嚴格小於1。矛盾,證畢。

12樓:老登高

π不是有理數,不能表達成分數形式。

π是無理數,屬於無限不迴圈小數。

而且π還是超越數,也就是說不屬於代數數,是不滿足任乙個整係數代數方程anxn+an-1xn-1+…+a1x+a0=0( an≠0,n≥1 )的數。

要知道所有超越數都是無理數,但大部分無理數都不是超越數。

13樓:璃玥千里

不是,π不是有理數的原因是它是無限不迴圈小數,這個只是比較明顯的例子。

除了π還有別的無限不迴圈小數。【不可以換成分數】而且有理數泛指有限小數和無限迴圈小數。【可以化成分數的】望採納

14樓:拉赫曼德培

當然不是了,π只是乙個無限不迴圈的小數,典型的無理數,不能用分數表示的,或無限不迴圈的都是無理數

15樓:匿名使用者

不是,因為它是無限不迴圈小數啊

π是正數,為什麼不是有理數

16樓:我是乙個麻瓜啊

因為π是無

限不迴圈小數。所以π不是有理數,π是無理數。

無理數,也稱為無限不迴圈小數,不能寫作兩整數之比。若將它寫成小數形式,小數點之後的數字有無限多個,並且不會迴圈。無理數的另一特徵是無限的連分數表示式。

無理數最早由畢達哥拉斯學派**希伯索斯發現。

根據無理數的定義:π這個數是無限不迴圈小數。應該歸屬於無理數的範圍。

17樓:匿名使用者

π是正的無限不迴圈小數,

是無理數。

無理數,也稱為無限不迴圈小數,不能寫作兩整數之比。若將它寫成小數形式,小數點之後的數字有無限多個,並且不會迴圈。 常見的無理數有非完全平方數或立方數、四次方數……的平方根、立方根、四次方根……、π和e等。

無理數的另一特徵是無限的連分數表示式。無理數最早由畢達哥拉斯學派**希伯索斯發現。

在數學中,無理數是所有不是有理數字的實數,後者是由整數的比率(或分數)構成的數字。當兩個線段的長度比是無理數時,線段也被描述為不可比較的,這意味著它們不能「測量」,即沒有長度(「度量」)。

常見的無理數有:圓周長與其直徑的比值,自然對數的底數e,**數((√5-1)/2)等等。

可以看出,無理數在位置數字系統中表示(例如,以十進位制數字或任何其他自然基礎表示)不會終止,也不會重複,即不包含數字的子串行。例如,數字π的十進位制表示從3.14159265358979……開始,但沒有有限數字的數字可以精確地表示π,也不重複。

必須終止或重複的有理數字的十進位制擴充套件的證據不同於終止或重複的十進位制擴充套件必須是有理數的證據,儘管基本而不冗長,但兩種證明都需要一些工作。數學家通常不會把「終止或重複」作為有理數概念的定義。

無理數也可以通過非終止的連續分數來處理。

無理數是指實數範圍內不能表示成兩個整數之比的數。簡單的說,無理數就是10進製下的無限不迴圈小數,如圓周率。人們發現的第乙個無理數就是2的算術平方根,即√2。

古希臘畢達哥拉斯學派是乙個研究數學、科學、哲學的團體,他們推崇有理數論,即認為一切數都是有理數。有乙個名叫希帕蒂斯的學生,在算1和2的比例中項時,左思右想都想不出這個中項值。後來他畫一邊長為1的正方形,設對角線為d,於是根據畢達哥拉斯定理(勾股定理):

d^2=1×1+1×1=2。他想:d代表正方形對角線長,而d^2=2,那麼d必定是確定的數。

但它是整數還是分數呢?他證明d肯定不能是整數,因1^2=1, 2^2=4, d^2=2,d必定大於1而小於2,1與2之間卻沒有別的整數。那麼d會不會是分數呢?

畢達哥拉斯和他的學生們絞盡腦汁也找不到這個分數。

這樣,如果d既不是整數又不是分數,那它是個什麼數呢?於是許多人都否定這個數的存在。而希帕索斯等人卻認為這必定是乙個新數,希帕索思本人也叫不出名字來。

這一發現,使得畢達哥拉斯學派的「有理數論」動搖了,從而導致了西方數學史上的第一次 「數學危機 」。而希帕索斯本人因違背了「有理數論」的信條而受到處罰,被扔到大海浬淹死了。

乙個代數式,根號下如果有字母,則叫做無理式。

希望我能幫助你解疑釋惑。

是不是有理數為什麼,「 」是不是有理數?

不是有理數。有理數是 數與代數 領域中的重要內容之一,在現實生活中有廣泛的應用,是繼續學習實數 代數式 方程 不等式 直角座標系 函式 統計等數學內容以及相關學科知識的基礎。數學上,有理數是乙個整數a和乙個正整數b的比,例如3 8,通則為a b。0也是有理數。有理數是整數和分數的集合,整數也可看做是...

有理數指的是什麼數?有理數的定義是什麼?

整數和分數。正整數 0 負整數 和分數的統稱,是整數和分數的集合。正整數和正分數合稱為正有理數,負整數和負分數合稱為負有理數。因而有理數集的數可分為正有理數 負有理數和零。由於任何乙個整數或分數都可以化為十進位制迴圈小數,反之,每乙個十進位制迴圈小數也能化為整數或分數,因此,有理數也可以定義為十進位...

有理數的除法與有理數的乘法有什麼關係

除以乙個有理數就等於 乘以這個有理數的 倒數 同理乘以乙個有理數就等於除以這個有理數的倒數。注意0不可做分母 這個就是有理數的除法與有理數的乘法的基本關係,事實上它推廣到實數範圍 複數範圍也都是適用的。除法與乘法的關係 除以乙個有理數就等於乘以這個有理數的倒數,所以同理乘以乙個有理數就等於除以這個有...