1樓:匿名使用者
u=x/(x²+y²+z²)
那麼∂u/∂x=[(x²+y²+z²)-2x²] /(x²+y²+z²)²=(y²+z²-x²) /(x²+y²+z²)²
而∂u/∂y=-2xy/(x²+y²+z²)²,∂u/∂z =-2xz/(x²+y²+z²)²
所以得到全微分為
du=(y²+z²-x²) /(x²+y²+z²)² dx -2xy/(x²+y²+z²)² dy -2xz/(x²+y²+z²)² dz
偏導和全微分物理區別是什麼?
2樓:周思敏哈哈哈
1、物理
意義不同,偏導的物理意義是單一引數的變化,引起的物理量的變化率。全微分的物理意義是所有引數同時變化,所引起函式的整體變化。
2、幾何意義不同,偏導數的幾何意義是在某點相對於x或y軸的影象的切線斜率,而全微分是各個偏微分之和。
3、定義不同,函式若在某平面區域d內處處可微時,則稱這個函式是d內的可微函式,全微分的定義可推廣到三元及三元以上函式。乙個多變數的函式的偏導數,就是它關於其中乙個變數的導數而保持其他變數恆定(相對於全導數,在其中所有變數都允許變化)。
3樓:pasirris白沙
1、偏導的物理意義:
單一引數的變化,引起的物理量的變化率。
例如:a、∂p/∂t:溫壓變化率 = 壓強隨著溫度的變化率;
b、∂v/∂t:體壓變化率 = 體積隨著溫度的變化率。
.2、全微分的物理意義:
所有引數同時變化,所引起函式的整體變化。
例如:對於理想氣體,p = nrt/v = f(t,v)dp = (∂f/∂t)dt + (∂f/∂v)dv也就是,
壓強p的微小變化,是由溫度引起的變化量(∂f/∂t)dt,跟由體積引起的變化量(∂f/∂v)dv,這兩者之和所確定。
偏導數與全導數的關係 以及 偏微分與全微分的關係
4樓:匿名使用者
1。偏導數
代數意義
偏導數是對乙個變數求導,另乙個變數當做數
對x求偏導的話y就看作乙個數,描述的是x方向上的變化率
對y求偏導的話x就看作乙個數,描述的是y方向上的變化率
幾何意義
對x求偏導是曲面z=f(x,y)在x方向上的切線
對y求偏導是曲面z=f(x,y)在x方向上的切線
這裡在補充點。就是因為偏導數只能描述x方向或y方向上的變化情況,但是我們要了解各個方向上的情況,所以後面有方向導數的概念。
2。微分
偏增量:x增加時f(x,y)增量或y增加時f(x,y)
偏微分:在detax趨進於0時偏增量的線性主要部分
detaz=fx(x,y)detax+o(detax)
右邊等式第一項就是線性主要部分,就叫做在(x,y)點對x的偏微分
這個等式也給出了求偏微分的方法,就是用求x的偏導數求偏微分
全增量:x,y都增加時f(x,y)的增量
全微分:根號(detax方+detay方)趨於0時,全增量的線性主要部分
同樣也有求全微分公式,也建立了全微分和偏導數的關係
dz=adx+bdy 其中a就是對x求偏導,b就是對y求偏導
希望樓主注意的是導數和微分是兩個概念,他們之間的關係就是上面所說的公式。概念上先有導數,再有微分,然後有了導數和微分的關係公式,公式同時也指明了求微分的方法。
3.全導數
全導數是在復合函式中的概念,和上面的概念不是乙個系統,要分開。
u=a(t),v=b(t)
z=f[a(t),b(t)]
dz/dt 就是全導數,這是復合函式求導中的一種情況,只有這時才有全導數的概念。
dz/dt=(偏z/偏u)(du/dt)+(偏z/偏v)(dv/dt)
建議樓主在復合函式求導這裡好好看看書,這裡分為3種情況。1.中間變數一元就是上面的情況,才有全導數的概念。
2.中間變數有多元,只能求偏導 3.中間變兩有一元也有多元,還是求偏導。
對於你的題能求對x的偏導數,對y的偏導數,z的全微分,不能求全導數
如果z=f(x^2,2^x) 只有這種情況下dz/dx才是全導數!
5樓:桂嘉偉
偏導數就是
在乙個範圍裡導數,如在(x0,y0)處導數。
全導數就是
定義域為r的導數,如在實數內都是可導的
在數學中,乙個多變數的函式的偏導數是它關於其中乙個變數的導數,而保持其他變數恆定(相對於全導數,在其中所有變數都允許變化)。偏導數在向量分析和微分幾何中是很有用的。
函式f關於變數x的偏導數寫為或。偏導數符號是圓體字母,區別於全導數符號的正體d。 這個符號是阿德里安-馬里·勒讓德介入的並在雅可比的重新介入後得到普遍接受。
偏導數z=xy+y
對x求偏導z'=y
對y求偏導z'=x+1
全導數y=x^2
對x求偏導 y'=2x
求偏導時就把其它變數看作常數,字母代號即可,如z=x^2+y^2,對x求偏導,zx=2x,
對y求偏導,zy=2y,
全導時對所有變數分別求導,如對z求全導dz=2xdx+2ydy
6樓:匿名使用者
自己看,知道對數
學公式支援太差
偏導數和全微分有什麼區別
7樓:吉祿學閣
通過全微分可以求出偏導數,例如:
全微分dz=f(x,y,z)dx+g(x,y,z)dy,則:z對x的偏導數=f(x,y,z);
z對y的偏導數=g(x,y,z)。
如何講清楚多元函式全微分與偏導數的關係?
8樓:幸運的
dz=fx(x,y)δ
x+fy(x,y)δy,dz是全微分,fx、fy是對x、y的偏導數。
如果函式z=f(x, y) 在(x, y)處的全增量
δz=f(x+δx,y+δy)-f(x,y)
可以表示為
δz=aδx+bδy+o(ρ),
其中a、b不依賴於δx, δy,僅與x,y有關,ρ趨近於0(ρ=√[(δx)2+(δy)2]),此時稱函式z=f(x, y)在點(x,y)處可微分,aδx+bδy稱為函式z=f(x, y)在點(x, y)處的全微分,記為dz即
dz=aδx +bδy
該表示式稱為函式z=f(x, y) 在(x, y)處(關於δx, δy)的全微分。
在數學中,乙個多變數的函式的偏導數,就是它關於其中乙個變數的導數而保持其他變數恆定(相對於全導數,在其中所有變數都允許變化)。偏導數在向量分析和微分幾何中是很有用的。
在一元函式中,我們已經知道導數就是函式的變化率。對於二元函式我們同樣要研究它的「變化率」。然而,由於自變數多了乙個,情況就要複雜的多。
在xoy平面內,當動點由p(x0,y0)沿不同方向變化時,函式f(x,y)的變化快慢一般說來是不同的,因此就需要研究f(x,y)在(x0,y0)點處沿不同方向的變化率。
在這裡我們只學習函式f(x,y)沿著平行於x軸和平行於y軸兩個特殊方位變動時,f(x,y)的變化率。
偏導數的運算元符號為:∂。
偏導數反映的是函式沿座標軸正方向的變化率。
表示固定面上一點的切線斜率。
偏導數f'x(x0,y0)表示固定面上一點對x軸的切線斜率;偏導數f'y(x0,y0)表示固定面上一點對y軸的切線斜率。
高階偏導數:如果二元函式z=f(x,y)的偏導數f'x(x,y)與f'y(x,y)仍然可導,那麼這兩個偏導函式的偏導數稱為z=f(x,y)的二階偏導數。
二元函式的二階偏導數有四個:f"xx,f"xy,f"yx,f"yy.
注意:f"xy與f"yx的區別在於:前者是先對x求偏導,然後將所得的偏導函式再對y求偏導;後者是先對y求偏導再對x求偏導.
當f"xy與f"yx都連續時,求導的結果與先後次序無關。
9樓:向真丶
1.偏導數不存在,全微分就不存在
2.全微分若存在,偏導數必須存在
3.有偏導數存在,全微分不一定存在
微分是函式改變量的線性主要部分,導數是微積分中的重要基礎概念。當函式y=f(x)的自變數x在一點x0上產生乙個增量δx時,函式輸出值的增量δy與自變數增量δx的比值在δx趨於0時的極限a如果存在,a即為在x0處的導數。
10樓:pasirris白沙
1、偏導數,partial differentiation,一般是指沿著 x 方向、或 y 方向、
或 z 方向的導數;導數在美語中,喜歡用 derivative。
2、無論是沿著 x、y、z 哪個方向的導數,計算導數的方法,跟一元函式
求導數的方法,完全一樣;對 x 方向求導時,將 y、z 當成常數對待;
3、進一步推廣到任意方向,在任意方向上的導數,稱為方向導數,directional
differentiation,或 directional derivative;
4、方向導數的概念,其實也是偏導數的概念,但是寫成全導數的形式;
5、方向導數寫成全導數 total differentiation 的形式,原因是方向導數的
計算一般是由 x、y、z 三個方向的偏導數的分量 ***ponent 相加而成;
6、全導數,就是全微分,在英文中沒有絲毫區別,導數跟微分的區別是中國
微積分概念,不是國際通用微積分的概念;
7、全微分的意思是 : 函式的的無窮小增量 du,**於三個方向上的無窮小
相加而成,即 du = (∂u/∂x)dx + (∂u/∂y)dy + (∂u/∂z)dz。
歡迎追問,歡迎討論,中英文不限。
最好是用英文討論,因為用英文討論,不會產生中文中的歧義,看英文**
不會出現概念的誤解,中文微積分的一些概念在英文中是不存在的,會產生
誤會而難以準確理解國際微積分的真實含義。
全微分與偏導數的定義是什麼,偏導和全微分物理區別是什麼?
1.二元函式中,偏導數存在是全微分存在的必要條件 2.偏導數連續是全微分存在的充分條件3.若p x,y dx q x,y dy du x,y 則稱pdx qdy 0為全微分方程,顯然,這時該方程通解為u x,y c c是任意常數 根據二元函式的全微分求積定理 設開區域g是一單連通域,函式p x,y ...
偏導數與全微分,偏導和全微分物理區別是什麼?
1 偏導的物理意義 單一引數的變化,引起的物理量的變化率。例如 a p t 溫壓變化率 壓強隨著溫度的變化率 b v t 體壓變化率 體積隨著溫度的變化率。2 全微分的物理意義 所有引數同時變化,所引起函式的整體變化。例如 對於理想氣體,p nrt v f t,v dp f t dt f v dv也...
積分 微分 導數 極限和偏導的幾何意義還有他們之間的聯絡與
1 一元函式,可導就是可微,沒有本質區別,完全是乙個意思的兩種表述 可導強調的是曲線的斜率 變數的牽連變化率 可微強調的是可以分割性 連續性 光滑性。dx dy 可微性 dy dx 可導性 dy dy dx dx,在工程應用中,變成 y dy dx x 這就是可導 可微之間的關係 可導 可微 dif...