大學高數二重積分化為極座標形式,的取值範圍怎麼確定

2021-03-04 05:18:32 字數 1508 閱讀 7500

1樓:匿名使用者

極座標r的範圍,可以畫乙個從原點指向出來的箭頭,先穿越的曲線就

是下限,後穿越的曲線就是上線。

角度θ的範圍就是看這個區域所在的象限範圍,解兩曲線的交點座標(x,y)後,角度θ=arctan(y/x),如圖中,角度就是由0變化到π/2

大學高數二重積分化為極座標形式,θ的取值範圍怎麼確定

2樓:匿名使用者

你好!以這個圖為例子

極座標r的範圍,可以畫乙個從原點指向出來的箭頭,先穿越的曲線就是下限,後穿越的曲線就是上線。

角度θ的範圍就是看這個區域所在的象限範圍,解兩曲線的交點座標(x,y)後,角度θ=arctan(y/x),如圖中,角度就是由0變化到π/2

很高興能回答您的提問,您不用新增任何財富,只要及時採納就是對我們最好的回報

。若提問人還有任何不懂的地方可隨時追問,我會盡量解答,祝您學業進步,謝謝。

如果問題解決後,請點選下面的「選為滿意答案」

學習高等數學最重要是持之以恆,其實無論哪種科目都是的,除了多書裡的例題外,平時還要多親自動手做練習,每種型別和每種難度的題目都挑戰一番,不會做的也不用氣餒,多些向別人請教,從別人那裡學到的知識就是自己的了,然後再加以自己鑽研的話一定會有不錯的效果。所以累積經驗是很重要的,最好的方法就是常來幫別人解答題目,增加歷練和做題經驗了!

3樓:匿名使用者

極座標r的範圍,可以畫乙個從原點指向出來的箭頭,先穿越的曲線就是下限,後穿越的曲線就是上線。

角度θ的範圍就是看這個區域所在的象限範圍,解兩曲線的交點座標(x,y)後,角度θ=arctan(y/x),如圖中,角度就是由0變化到π/2

二重積分用極座標形式θ怎麼確定範圍,根據什麼,是d還是根據被積分的部分啊,極座標完全不太懂。 10

4樓:不是苦瓜是什麼

極座標r的範圍,可以畫乙個從原點指向出來的箭頭,先穿越的曲線就是下限,後穿越的曲線就是上線。

角度θ的範圍就是看這個區域所在的象限範圍,解兩曲線的交點座標(x,y)後,角度θ=arctan(y/x),如圖中,角度就是由0變化到π/2。

1、原點(極點)在積分區域的內部,θ的範圍從0到2π;

2、原點(極點)在積分區域的邊界,θ的範圍從區域的邊界,按逆時針方向掃過去;

3、原點(極點)在積分區域之外,θ的範圍從區域的靠極軸的邊界,按逆時針方向掃過去。

5樓:後街老訞

沒有題不太好回答,θ的取值範圍一般是根據草圖確定的,直接通過直角座標系就可以得到,比如說被積區域是圓心在原點處的整個圓,那麼就取2派,若只取上半個圓就取0到派,等等,若是半徑為1 圓心在(0,1)處的整個圓,就取0到派,。這樣說就懂了吧。先理解好被積函式是1的時候,極座標是怎麼計算面積(被積函式是1)就懂了

6樓:木沉

極座標只是座標變換,雖然引數域發生了改變,但是被表示的點是不會變化的。

所以theta的範圍應該根據被積分的區域來定。

高數,二重積分,高數中二重積分

這是我的理解 二重積分和二次積分的區別 二重積分是有關面積的積分,二次積分是兩次單變數積分。當f x,y 在有界閉區域內連續,那麼二重積分和二次積分相等。對開區域或無界區域這關係不衡成立。可二次積分不一定能二重積分。如對 0,1 0,1 區域,對任意x 0,1 可定義一個對y連續的函式g x,y y...

二重積分,極座標如何化成直角座標

r 1 cos 等價於 rcos 1 而 rcos 其實就是直角座標系中的 x 至於 0 45 就是 y x 直線的下方部分 這道題還更要求在第一象限部分 二重積分直角座標化為極座標,範圍怎麼確定 乙個比較抄直觀的方法是bai先在座標圖中先畫出二重積du分的區域zhi,然後再根據這個區域確定極座標的...

題型是講極座標下的二重積分轉化為直角座標系下的二重積分,怎麼做?如下圖第四題

選源d不管是直角座標化為極坐bai標也好 du,還是極座標化為直角座標也好,只要是二重zhi積分,最重要dao的都是作出積分區域,此外需要記住直角座標與極座標的對應關係 x rcos y rsin 這個地方,觀察積分,熟悉的話,很容易就看出是乙個圓心在x軸上的第一象限的半圓。不熟的話,稍微計算一下,...