1樓:雲白山
對角和互補
請採納!可追問!
2樓:匿名使用者
證明到某一點的距離相等,這個點就是圓心
四點共圓的判定和性質
3樓:所示無恆
判定定理:
方法1: 把被證共圓的四個點連成共底邊的兩個三角形,且兩三角形都在這底邊的同側,若能證明其頂角相等,從而即可肯定這四點共圓。(可以說成:
若線段同側二點到線段兩端點連線夾角相等,那麼這二點和線段二端點四點共圓)
方法2 :把被證共圓的四點連成四邊形,若能證明其對角互補或能證明其乙個外角等於其鄰補角的內對角時,即可肯定這四點共圓。(可以說成:
若平面上四點連成四邊形的對角互補或乙個外角等於其內對角,那麼這四點共圓)
四點共圓有三個性質:
(1)共圓的四個點所連成同側共底的兩個三角形的頂角相等;
(2)圓內接四邊形的對角互補;
(3)圓內接四邊形的外角等於內對角。
擴充套件資料
托勒密定理
若abcd四點共圓(abcd按順序都在同乙個圓上),那麼ab*dc+bc*ad=ac*bd。
例題:證明對於任意正整數n都存在n個點使得所有點間兩兩距離為整數。
解答:歸納法。我們用歸納法證明乙個更強的定理:
對於任意n都存在n個點使得所有點間兩兩距離為整數,且這n個點共圓,並且有兩點是一條直徑的兩端。n=1,n=2很輕鬆。當n=3時,乙個邊長為整數的勾股三角形即可:
比如說邊長為3,4,5的三角形。我們發現這樣的三個點共圓,邊長最長的邊是一條直徑。假設對於n大於等於3成立,我們來證明n+1。
假設直徑為r(整數)。找乙個不跟已存在的以這個直徑為斜邊的三角形相似的乙個整數勾股三角形abc(邊長a這個三角形在圓上面對應了第n+1個點,記為p。於是根據ptolomy定理,p和已存在的所有點的距離都是乙個有理數。
(考慮p,這個點q和直徑兩端的四個點,這四點共圓,於是pq是乙個有理數因為ptolomy定理裡的其它數都是整數。)引入乙個新的點p增加了n個新的有理數距離,記這n個有理數的最大公分母為m。最後只需要把這個新的圖擴大到原來的m倍即可。
歸納法成立,故有這個命題。
4樓:匿名使用者
四點共圓的定義:如果同一平面內的四個點在同乙個圓上,則稱這四個點共圓,一般簡稱為「四點共圓」
證明四點共圓有下述一些基本方法:
方法1 從被證共圓的四點中先選出三點作一圓,然後證另一點也在這個圓上,若能證明這一點,即可肯定這四點共圓.
方法2 把被證共圓的四點連成共底邊的兩個三角形,若能證明其兩頂角為直角,從而即可肯定這四個點共圓.
方法3 把被證共圓的四個點連成共底邊的兩個三角形,且兩三角形都在這底邊的同側,若能證明其頂角相等,從而即可肯定這四點共圓.
方法4 把被證共圓的四點連成四邊形,若能證明其對角互補或能證明其乙個外角等於其鄰補角的內對角時,即可肯定這四點共圓.
方法5 把被證共圓的四點兩兩連成相交的兩條線段,若能證明它們各自被交點分成的兩線段之積相等,即可肯定這四點共圓;或把被證共圓的四點兩兩鏈結並延長相交的兩線段,若能證明自交點至一線段兩個端點所成的兩線段之積等於自交點至另一線段兩端點所成的兩線段之積,即可肯定這四點也共圓.
方法6 證被證共圓的點到某一定點的距離都相等,從而確定它們共圓.
上述六種基本方法中的每一種的根據,就是產生四點共圓的一種原因,因此當要求證四點共圓的問題時,首先就要根據命題的條件,並結合圖形的特點,在這六種基本方法中選擇一種證法,給予證明.
判定與性質:
圓內接四邊形的對角和為180度,並且任何乙個外角都等於它的內對角。
如四邊形abcd內接於圓o,延長ab至e,ac、bd交於p,則a+c=180度,b+d=180度,
角abc=角adc(同弧所對的圓周角相等)。
角cbe=角d(外角等於內對角)
△abp∽△dcp(三個內角對應相等)
ap*cp=bp*dp(相交弦定理)
ab*cd+ad*cb=ac*bd(托勒密定理)
判斷四點共圓的方法
5樓:樂為人師
根據圓內四邊形的一些定理,它箇逆定理也可判定四點共圓。
1、圓的內接四邊形的兩對角和是180度,反之,如果四邊形的兩對角和是180,那麼四點共圓。
2、在圓裡,同弦角相等。設a、b、c、d四點在圓上,明顯,ab弦所對的角∠acb=∠adb。反之,如果∠acb=∠adb,那四點共圓。
6樓:魔獸逗牛士
1,如果內接四邊形的兩對角和是180,那麼四點共圓。
7樓:匿名使用者
四點組成的四邊形的對角線是不是相等
8樓:金志濤
將四點連線起來,連線對角線,對角線相交於一點。以這點為圓心劃弧,看四點是不是在同一圓上
如何用座標判斷四點共圓
9樓:匿名使用者
1、用三個點求出園方程,把第四個點座標代入,符合即為共園。
2、作相鄰兩個座標點的連線中垂線 總共作出三條。看看交不交於一點
10樓:斜陽殘星丶
坐相鄰兩個座標的連線中垂線 總共做出三條。看看交不交於一點
如何證明四點共圓?
11樓:匿名使用者
四點共圓
證明四點共圓的基本方法
證明四點共圓有下述一些基本方法:
方法1從被證共圓的四點中先選出三點作一圓,然後證另一點也在這個圓上,若能證明這一點,即可肯定這四點共圓。
方法2把被證共圓的四個點連成共底邊的兩個三角形,且兩三角形都在這底邊的同側,若能證明其頂角相等(同弧所對的圓周角相等),從而即可肯定這四點共圓. (若能證明其兩頂角為直角,即可肯定這四個點共圓,且斜邊上兩點連線為該圓直徑。)
方法3把被證共圓的四點連成四邊形,若能證明其對角互補或能證明其乙個外角等於其鄰補角的內對角時,即可肯定這四點共圓。
方法4把被證共圓的四點兩兩連成相交的兩條線段,若能證明它們各自被交點分成的兩線段之積相等,即可肯定這四點共圓(根據相交弦定理的逆定理);或把被證共圓的四點兩兩鏈結並延長相交的兩線段,若能證明自交點至一線段兩個端點所成的兩線段之積等於自交點至另一線段兩端點所成的兩線段之積,即可肯定這四點也共圓。(根據托勒密定理的逆定理)
方法5證被證共圓的點到某一定點的距離都相等,從而確定它們共圓.既連成的四邊形三邊中垂線有交點,即可肯定這四點共圓.
上述五種基本方法中的每一種的根據,就是產生四點共圓的一種原因,因此當要求證四點共圓的問題時,首先就要根據命題的條件,並結合圖形的特點,在這五種基本方法中選擇一種證法,給予證明.
判定與性質:
圓內接四邊形的對角和為180°,並且任何乙個外角都等於它的內對角。
如四邊形abcd內接於圓o,延長ab和dc交至e,過點e作圓o的切線ef,ac、bd交於p,則a+c=π,b+d=π,
角dbc=角dac(同弧所對的圓周角相等)。
角cbe=角ade(外角等於內對角)
△abp∽△dcp(三個內角對應相等)
ap*cp=bp*dp(相交弦定理)
eb*ea=ec*ed(割線定理)
ef*ef= eb*ea=ec*ed(切割線定理)
(切割線定理,割線定理,相交弦定理統稱圓冪定理)
ab*cd+ad*cb=ac*bd(托勒密定理ptolemy)
弦切角定理
方法6同斜邊的兩個rt三角形的四個頂點共圓,其斜邊為圓的直徑。
12樓:匿名使用者
因為圓內四邊形其對角所對應的兩段圓弧之和是整個圓的周長根據圓周角等於圓心角的一半(或者就是圓周角性質)任意圓內接四邊形的對角之和為180°
按照這個思路證明就可以了
13樓:良駒絕影
證明由這四個點組成的四邊形的對角互補就可以了。
判斷四點共圓後可以知道什麼?(如半徑的位置等)
14樓:葉聲紐
判斷四點共圓後可以知道什麼?(如半徑的位置等)
判斷四點共圓後,可以知道
半徑的長度和圓心的位置。
四點共圓的判定定理 當對角互補,則四點共圓。求幾何直接證明
設四點依次為a b c d,任何不共線的三個點確定乙個圓形,則a b c確定乙個圓 設圓心為o a d在弦bc的兩側,且角a 角d 108度,可知在圓上 這是定理 由此可知四點共圓 三點必共圓,對角互補所對的圓周也互補,另一點與其一點互補,則所對園周回補,他們共園!一般只能用同一法證明,即設圓上一點...
如何證明四個點共圓,怎麼證明四點共圓?
方法1從被證共圓的四點中先選出三點作一圓,然後證另一點也在這個圓上,若能證明這一點,即可肯定這四點共圓 方法2把被證共圓的四點連成共底邊的兩個三角形,若能證明其兩頂角為直角,從而即可肯定這四個點共圓 方法3把被證共圓的四個點連成共底邊的兩個三角形,且兩三角形都在這底邊的同側,若能證明其頂角相等,從而...
怎樣不用相似證四點共圓100分啊
本題所給條件 兩圓周角等 用反證法即可不用相似證四點共圓 先假設四點不共圓,由此推出與題目所給條件相矛盾的結果,即可證明四點共圓。四點共圓的定義 如果同一平面內的四個點在同乙個圓上,則稱這四個點共圓,一般簡稱為 四點共圓 證明四點共圓有下述一些基本方法 方法1 從被證共圓的四點中先選出三點作一圓,然...