1樓:匿名使用者
我比較推崇 數形結合 這種思想,很多題依靠正弦函式的圖象就可以解決了。
關於正弦定理解題
2樓:象子惠甄易
在乙個三角形中,各邊和它所對角的正弦的比相等,即。
a/sina=b/sinb=c/sinc=2r(2r在同乙個三角形中是恆量,是外接圓的半徑的兩倍)
s△abc=a*b*sinc/2=b*c*sina/2=a*c*sinb/2=a*b*c/(4r)[r為外接圓半徑]
關於正弦定理解題
3樓:我不是他舅
1、這個用正弦定理是無法判斷的。
因為鈍角和銳角的正弦都是正數。
這裡要用餘弦定理。
我們假設c最大。
則若是銳角三角形,有c是銳角。
所以cosc=(a²+b²-c²)/2ab>0a²+b²-c²>0
所以a²+b²>c²
而若是鈍角三角形。
則cosc=(a²+b²-c²)/2ab<0a²+b²-c²<0
所以a²+b²2、沒說什麼三角形。
則就是兩邊之和大於第三邊。
兩邊之差小於第三邊。
所以2-11 4樓:匿名使用者 若c^2=a^2+b^2,這是乙個直角三角形。 根本上不須要正弦定理(sine law),用畢氏定理就可以,請清楚問題! 一道正弦函式題 5樓:之家 首先,你的函式表達的不是很清楚。 如果你的函式是y=根號(2sinx+根號2)的話,定義域是[-π4+2kπ,π2kπ] 因為要使這個函式有意義,必有2sinx+根號2>=0,解得sinx>=-根號2/2 所以其定義域為[-π4+2kπ,π2kπ]如果你的函式是y=根號(2sinx)+根號2的話,其定義域為[2kπ,π2kπ] 我猜肯定是第一種可能多一點吧。 6樓:黑白 解:如果是y=√2sinx+√2,x∈r 如果是y=√(2sinx)+√2,則2sinx≥0sinx≥0 根據影象,x∈[2kπ,π2kπ](k∈r) 用正弦定理解題,過程 7樓: 解:依題意,可知。 ac=30×25=750(m) bca=75°-∠abc 由正弦定理,有。 750√2(m) 是任兩個比值相同 不能先比較兩個量再將得到的比值與第三個量進行比較 sin45 sin45 sin90 1 2 1 2 1 對的啊。如果對多個數連續比例不清楚。先看以下 1 2 3 4 2 4 8 16 怎樣理解正弦定理的變形公式。求詳解。正鉉就是三角函式,sin,也就是這個角的對邊與斜邊的比,你再... s 4 0.184 1 cos x 2 1 2 dx,積分區間為 0,pai 2 橢圓弧長積分無法用初等函式表達,只能用數值方法近似計算。急!正弦曲線的長度怎麼求 等 點我忘了,如果我這樣做,那麼我會用cad的再次得出的數額。原式可以化簡成 s a1coswt a2sinwt 的形式 其中 a1平方... 首先要記住 f x sinx的單調增區間是x 2k 2,2k 2 單調減區間是x 2k 2,2k 3 2 k z f x cosx的單調增區間是x 2k 2k 單調減區間是x 2k 2k k z 遇到復合函式時,把 x 看作乙個整體,以余弦函式為例,函式簡化為f x asin 由於單調區間和a沒有關...關於正弦定理變形公式的疑惑,怎樣理解正弦定理的變形公式。求詳解。
怎麼求正弦函式的曲線長度,急!!正弦曲線的長度怎麼求線上等
正弦函式的單調區間怎麼求