初中數學函式知識同課異構課題研究思路

2022-10-25 01:15:05 字數 5203 閱讀 7971

1樓:匿名使用者

分析copy

函式y=x³+3x²-24x+20的單調區間、極值、凹凸區間以及拐點,必須要進行求導,利用一階導數判斷單調性和極值,利用二階導數來判斷凸凹區間及拐點。

y'=3x²+6x-24=0,得x=-4, x=2當x<-4或x>2時,y'>0,當-4-1時,y''>0所以(-∞,-1)為凸區間,(-1,+∞)為凹區間。

拐點為(-1,f(-1)),即為(-1,46)

數學數學數學函式

2樓:匿名使用者

y=f(x)遞增,那bai

麼y=f(3-2x)遞減。du因為函式

zhi復合了。

同理y=f(x)遞減,y=f(3-2x)遞增。daoy=f(3-2x)增區間版7≤

權3-2x≤14,-2≥x≥-11/2

y=f(3-2x)減區間-4≤3-2x≤7,7/2≥x≥-2

3樓:匿名使用者

解,f(3-2x)的增區間滿足

7≤3-2x≤14

則x∈[-11/2,-2]

同理,-4≤3-2x≤7

x∈[-2,7/2]為減區間。

4樓:匿名使用者

增區間[-2,7/2]

減區間[-11/2,2]

5樓:

-4<3-2x<7

7<3-2x<14

6樓:餘亭鹿稷

年產值y與年數x的函式關係是

y=420+52x

五年後的年產的年產值=420+52x5=680萬元

高等數學中的函式如何學習

7樓:匿名使用者

要學好高等數

學的函式,首先了解高等數學的特點。高等數學有三個顯著的特點:高度的抽象性;嚴謹的邏輯性;廣泛的應用性。

( 1 )高度的抽象性

數學的抽象性在簡單的計算中就已經表現出來。我們運用抽象的數字,卻不是每次都把它們同具體的物件聯絡起來。在數學的抽象中只留下量的關係和空間形式,而捨棄了其他一切。

它的抽象程度大大超過了自然科學中一般的抽象。

( 2 )嚴謹的邏輯性

數學中的每乙個定理,不論驗證了多少例項,只有當它從邏輯上被嚴格地證明了的時候,才能在數學中成立。在數學中要證明乙個定理,必須是從條件和已有的數學公式出發,用嚴謹的邏輯推理方法匯出結論。

( 3 )廣泛的應用性

高等數學具有廣泛的應用性。例如,掌握了導數概念及其運算法則,就可以用它來刻畫和計算曲線的切線斜率、曲線的曲率等等幾何量;就可以用它來刻畫和計算速度、加速度、密度等等物理量;就可以用它來刻畫和計算產品產量的增長率、成本的下降率等等經濟量; …… 。掌握了定積分概念及其運算法則,就可以用它來刻畫和計算曲線的弧長、不規則圖形的面積、不規則立體的體積等等幾何量;就可以用它來刻畫和計算變速運動的物體的行程、變力所做的功、物體的重心等等物理量;就可以用它來刻畫和計算總產量、總成本等等經濟量。

高等數學既為其它學科提供了便利的計算工具和數學方法,也是學習近代數學所必備的數學基礎。了解了這些就能學好高等數學的函式了。

8樓:匿名使用者

函式考察的題目有以下幾點:

1、定義域

2、值域

3、最值(最大最小)

4、圖象對稱

5、交點

6、平移

而最難的屬於後面3個,因此學習高中函式一定要掌握數學的重要思想,那就是數形結合,幾個典型的函式的圖象一定要牢牢掌握,對於快速而準確的解決問題有非常大的幫助,遇到什麼難題,我們可以共同**一下。

9樓:沙漠射手

我覺得數學學習沒有什麼特別好的拌飯 就是多做題 題做多了 自然就會總結出規律

如何學好高中數學函式?

10樓:匿名使用者

數學必修一還只是高中課程的開始,所以不會太難,但是基礎要打好。

比如第一章:集合與函式概念。這一部分概念的記憶比較重要,而考試的時候很容易因為概念模糊而失分,所以上課的時候一定要認真聽講。

老師講課講得快也不代表講得不好,反而可以提高學生的思維速度。

第二章:基本初等函式。第三章:函式的應用。

函式是高中階段非常關鍵的乙個知識點,什麼單調性、最值、週期性、對稱性都會在後面的學習中有廣泛的應用。建議函式這一章多做一點練習,一邊練習一邊歸納。想要知道一道題該用什麼方法做這是問不出來的,題目做多了自然而然就成了自己的經驗,看到題目就會非常自然的做出來啦。

不做數學題就想學好數學是不可能的,而學數學也不能急功近利。一邊練習的同時一邊歸納做題的方法,數學成績自然而然就會好起來啦~ 還有,自信也是非常重要的~

哈哈lz,其實我是高三的,這只是我學了3年後的一點點小心得,希望對你有用,加油!~

11樓:何秋光學前數學

一、教給學生閱讀課本的方法

1.對於識字不多,思考能力有限的低年級的學生來說,應採取在老師指導下講解和閱讀相結合的辦法。如對剛入學的小朋友,首先要幫助他們初步了解數學課的特點,知道數學課要學習哪些知識,看數學課本的插圖時要看清、數準圖上各種東西的個數。

接著教他們學會有順序地閱讀教科書,即要從上到下,從左往右地看;教學10以內數的認知看主題圖時,要學會先整體後部分地看。又如,低年級教材中的知識是用各種圖示表示的,教師要把指導重點放在幫助學生掌握看圖方法上,努力使他們做到四會:一要會看例題插圖,能比較準確地進述圖意;二要會看標有思維過程的算式,看懂計算方法;三要會看應用題的圖示,能根據圖示理解題意,搞清數量之間的關係、思考解答方法;四要會看多種練習形式,懂得練習題的要求。

2.對於已積累了一定的知識和具有一定能力的中年級學生來說,教師可採用半工半讀半扶半放的方式進行培養。如教師既可先講後讀,具體指導學生閱讀課本的方法;也可騙制閱讀提綱,讓學生帶著提綱閱讀課本,尋找答案,幫助學生理解教材。

3.對於具有一定自學能力的高年級學生來說,則可採取課前預習、啟發引導、獨立閱讀的辦法。如指導預習時,教師對學生要有明確的要求,要有預習的範圍,要提出必要的思考題或實驗作業,要檢查預習情況。

課堂上教師可以放手讓學生去讀讀、講講、論論、練練的方式進行自學與討論,要求他們在把握知識的基礎上理清知識體系,進一步提高認知水平。

二、教給學生科學的記憶方法

1.理解記憶法。就是通過學生的積極思維,依據事物的內在聯絡,在理解的基礎上去記憶的方法。

如:什麼叫梯形。首先讓學生通過認真觀察,理解「只有一組對邊」是什麼意思,若把「只」字去掉又會怎樣。

通過積極思考,學生認知到「只有一組對邊平行」就是四條邊中相對的兩條邊為一組,其中一組平行,另一組不平行。這樣學生在理解的基礎上記憶梯形這個概念就容易了。

2.規律記憶法。就是尋找事物內在規律,抓住其規律幫助記憶的方法。

數學知識是有規律的,只要引導學生掌握其規律,就可以進行有效記憶。例如:記憶長度、面積、體積單位進率。

因為長度單位相鄰之間的進率是10,面積單位相鄰之間的進率是100,體積單位之間的進率是1000。掌握了這個規律記憶就比較容易。

3.形象記憶法。就是借助事物的形象或表象進行記憶的方法。

小學生的思維以形象思維為主,逐步向抽象思維發展。在教學中,教師講課時要注意生動、形象,以喚醒學生對事物的表象,進行形象記憶。例如,一年級數的認知教學時,老師把數與某些實物形象記憶:

把「2」比作小鴨子、「3」比作耳朵等。

4.比較記憶法。這是把相似、相近的數學材科學的進行對比,把握它們的相同點與不同點,加強記憶的一種方法。例如,整除與除盡,質數與互質數等,在學生理解後,引導學生進行比較記憶。

5.模擬聯想記憶法。是指對某一事物的感知或回憶引起性質上相似的事物的回憶的方法。

例如,讓學生記憶分數的基本性質時,引導學生聯想除法的商不變性質和除法與分數的關係,那麼分數的基本性質就不難記憶了。

6.歸納記憶法。是把具有內在聯絡的知識集中起來,組成系統,形成網路的記憶方法。

你如,有關面積知識,學生是跨越幾個年級才全部學完。這些圖形有特徵上的不同,也有公式上的區別。零敲碎打獲得的知識,必須給予系統上的整理,才能保證這部分知識本身固有的整體性。

可以通過下面網狀圖形,把這些圖形的內在聯絡揭示出來,這樣有利於學生進行系統記憶。

三、教給學生複習的方法

複習就是把學過的數學知識再進行學習,以達到深入理解、融會貫通、精練概括、牢固掌握的目的。學生對數學知識的學習,是包括一堂堂數學課累積起來的,因而所獲得的知識往往是零碎的和片面的,時間一長,就會出現知識鏈條的斷裂現象。基於這一點,單元複習和總複習都是很重要的。

小學數學教學中,複習的方法主要有以下幾點:

1.概括複習。學生每學完乙個小單元或乙個大單元,就組織他們對於知識體系進行一次再概括,理出綱目,記住輪廓,列出重點,幫助他們掌握單元的主要內容。

2.分類複習。引導學生把學過的知識和技能進行分類整理、分模擬較,以加強知識的內在聯絡和知識的深度、廣度,幫助學生加深理解與記憶。

3.區別複習。把學過的相似的概念、規則等,如以區別、比較,掌握知識的特徵。

總之,一方面,複習要在理解教材的基礎上,溝通知識間的內在聯絡,找出重點、關鍵,然後提煉概況,組成乙個知識系統,從而形成或發展擴大認知結構;另一方面,通過複習,不斷地對知識本身或從數學思想方法角度進行提高與精煉,是有利於能力的發展與提高的。

四、教會學生整理與歸納的方法

整理知識是一項主要的學習方法。小學數學知識,由於學生認識能力的原因,往往分若干層次逐漸完成。一節課後、乙個單元後或乙個學期後,需要對所學知識進行整理與歸納,形成良好的認知結構,便於記憶和運用。

1.把知識串成「塊」,形成知識網路。

小學幾何初步知識涉及到五線(直線、線段、射線、垂線、平行線)、六角(銳角、直角、鈍角、平角、周角、圓心角)、七形(長方形、正方形、三角形、平行四邊形、梯形、圓形、扇形)五體(長方體、正方體等)教完幾何後,把七種平面圖形組成乙個知識網路。

2.系統整理成表,便於記憶運用。按照數學知識的科學體系和小學生的認識規律,小學幾何初步知識分散在小學各冊實現教材中。

在總複習中,教師應避免羅列和重複以往知識,而應恢復幾何初步知識原有的知識體系和法則,按點、線(角)、面、體四大部分知識認真系統地歸納整理成表,使之在學生頭腦中條理化、系統化、網路化,便於記憶與運用。

五、教給學生知識遷移的方法

遷移是指已獲得知識、技能乃至方法和態度對學習新知識新技能的影響。先前學習對後繼學習起積極、促進作用的,糾正遷移,反之糾負遷移。人們在解決新課題時,總是利用已有的知識技能去尋找解決問題的方法。

數學是一門邏輯性、嚴密性極強的學科,它的知識系統性強,前面的知識是後面的基礎,後面的知識是前面知識的延伸與發展。所以教師必須緊緊抓住前後知識的內在聯絡,教給學生知識遷移的方法。

初中數學題 函式的,初中數學函式試題

1.設m與t之間成二次函式。設為 ax bx c y 把前三個數值帶入。求的 a 0,b 2,c 96 所以m實際上與t為一次函式。m 2t 96 2.設利潤n為t的函式,那麼。n my 20m 2t 96 y 20 2t 96 y與t的關係題目已經給出。那麼前20天的函式關係為 n 2t 96 t...

初中函式知識框架,初中所有函式知識點總結都有什麼?

代數 因式分解 分組分解。二次根式 化簡 公式 的運用 分母有理化 最簡二次根式。分式運算 異分母分式的混合運算 通分 符號 運算順序 一元二次方程 韋達定理的運用 求根公式 十字相乘法。分式方程 去分母法解分式方程 換元法解分式方程 驗根 不等式 解不等式組。正比例函式 性質 k的正負與圖象的關係...

初中語文知識點總結,初中數學知識點總結

中學語文 基礎知識學習記憶口訣 一 漢語拼音 a o e,i u 標調多按此順序 額 初中好久遠的詞咯 呵呵 小感一下哈 其實初中語文最重要的知識點可以說就是課本上所列的生字,詞語或成語,不要認為這種想法很幼稚,而且認為自己已經認識很多的字咯,就不記它或是偷懶哈,這可要不得地。還有每章後面好像都有關...