勾股定理是什麼,什麼是勾股定理

2022-09-04 10:35:07 字數 5773 閱讀 8486

1樓:匿名使用者

勾股定理:在任何乙個直角三角形中,兩條直角邊的平方之和一定等於斜邊的平方。

這個定理在中國又稱為「商高定理」,在外國稱為「畢達哥拉斯定理」。

勾股定理(又稱商高定理,畢達哥拉斯定理)是乙個基本的幾何定理,早在中國商代就由商高發現。據說畢達哥拉斯發現了這個定後,即斬了百頭牛作慶祝,因此又稱「百牛定理」。

勾股定理指出:

直角三角形兩直角邊(即「勾」,「股」)邊長平方和等於斜邊(即「弦」)邊長的平方。

也就是說,

設直角三角形兩直角邊為a和b,斜邊為c,那麼

a2 + b2 = c2

勾股定理現發現約有400種證明方法,是數學定理中證明方法最多的定理之一。

勾股陣列

滿足勾股定理方程a2 + b2 = c2的正整數組(a,b,c)。例如(3,4,5)就是一組勾股陣列。

由於方程中含有3個未知數,故勾股陣列有無數多組。

推廣 如果將直角三角形的斜邊看作二維平面上的向量,將兩斜邊看作在平面直角座標系座標軸上的投影,則可以從另乙個角度考察勾股定理的意義。即,向量長度的平方等於它在其所在空間一組正交基上投影長度的平方之和。

2樓:本驪燕

初中教的,2條直角邊的平方,再根號=斜邊

打個比方,乙個直角三角型,2條直角邊分別是3和4,斜邊讓你去求

你可以用勾股定理,3的平方+4的平方=25,25開根號後是5,這樣就算出是斜邊=5

3樓:沉默and無語

a^2+b^2=c^2

什麼是勾股定理

4樓:許實踐

勾股定理是乙個基本的幾何定理,指直角三角形的兩條直角邊的平方和等於斜邊的平方。中國古代稱直角三角形為勾股形,並且直角邊中較小者為勾,另一長直角邊為股,斜邊為弦,所以稱這個定理為勾股定理,也有人稱商高定理。 勾股定理現約有500種證明方法,是數學定理中證明方法最多的定理之一。

勾股定理是人類早期發現並證明的重要數學定理之一,用代數思想解決幾何問題的最重要的工具之一,也是數形結合的紐帶之一。在中國,商朝時期的商高提出了「勾三股四玄五」的勾股定理的特例。在西方,最早提出並證明此定理的為西元前6世紀古希臘的畢達哥拉斯學派,他用演繹法證明了直角三角形斜邊平方等於兩直角邊平方之和。

5樓:提分一百

勾股定理的公式是什麼

6樓:之澤雨

勾股定理裡的勾指的是直角三角形中較短的直角邊,股指的是直角三角形中較長的直角邊,還有斜邊叫弦

7樓:馬家西

勾股定理就是當乙個人不理你的時候,你拿勾子勾他或她的股,他或她肯定會理你,這就是勾股定理。

勾股定理是什麼?

8樓:越晗蕾溥陽

勾股定理或勾股弦定理,又稱畢達哥拉斯定理或畢氏定理(pythagoras

theorem)。是乙個基本的幾何定理,傳統上認為是由古希臘的畢達哥拉斯所證明。據說畢達哥拉斯證明了這個定理後,即斬了百頭牛作慶祝,因此又稱「百牛定理」。

在中國,《周髀算經》記載了勾股定理的乙個特例,相傳是在商代由商高發現,故又有稱之為商高定理;三國時代的趙爽對《周髀算經》內的勾股定理作出了詳細註釋,作為乙個證明。法國和比利時稱為驢橋定理,埃及稱為埃及三角形。

在乙個直角三角形中,斜邊邊長的平方等於兩條直角邊邊長平方之和。如果直角三角形兩直角邊分別為a、b,斜邊為c,那麼a的平方+b的平方=c的平方,即α*α+b*b=c*c

推廣:把指數改為n時,等號變為小於號

當三角形為鈍角時,哪麼a的平方+b的平方〈c的平方,即a*a+b*b〈c*c

當三角形為銳角時,哪麼a的平方+b的平方〉c的平方,即a*a+b*b〉c*c

據考證,人類對這條定理的認識,少說也超過

4000

年勾股數:是指能組成a^+b^=c^的三個正整數稱為勾股數.

9樓:時黎公孫季

勾股定理是:直角三角形直角邊a、b與斜邊關係是:a^2加b^2等於c^2.a^2表示a的平方哦~

10樓:戰幹過秀艾

直角三角形的兩條直角邊的平方和等於斜邊的平方。即a²+b²=c²

11樓:徭添初聽筠

乙個直角三角形

兩個直角邊分別長是

三釐公尺四釐公尺

那麼他的長斜邊是

五釐公尺也就是說

兩個直角邊的平方和

等於斜邊的平方

12樓:介羽霍採綠

設直角三角形的倆條直角邊為a.b。斜邊為c。則a*a+b*b=c*c

13樓:鄒宣別雁露

直角三角形兩邊的平方加起來等於斜邊長的平方

14樓:馮濰聶半槐

在乙個直角三角形中,斜邊邊長的平方等於兩條直角邊邊長平方之和。

15樓:白柏亢泰清

a^2+b^2=c^2,在直角三角形中,斜邊是c,其他兩邊分別是b.a

16樓:竹賓盧葉欣

三角形的兩個直角邊邊長的平方和等於斜邊的平方

17樓:吉家隱靖琪

勾三股四玄五

兩直角邊分別是3和4,斜邊是5

3的平方+4的平方=5的平方

18樓:北京創典文化

勾股定理是乙個基本幾何定理,是人類早期發現並證明的重要數學定理之一,用代數思想解決幾何問題的最重要的工具之一,也是數形結合的紐帶之一。勾股定理是餘弦定理的乙個特例。

世界上幾個文明古國如古巴比倫、古埃及都先後研究過這條定理。我國也是最早了解勾股定理的國家之一,被稱為「商高定理」。

勾股直角邊

19樓:鈔暎釗齊心

你好,簡單的說就是直角三角形中兩直角邊的平方的和等於斜邊的平方。。。。

20樓:建瑤鎮甲

勾股定理:在任何乙個直角三角形中,兩條直角邊的平方之和一定等於斜邊的平方。這個定理在中國又稱為「商高定理」,在外國稱為「畢達哥拉斯定理」。

勾股定理(又稱商高定理,畢達哥拉斯定理)是乙個基本的幾何定理,早在中國商代就由商高發現。據說畢達高拉斯發現了這個定後,即斬了百頭牛作慶祝,因此又稱「百牛定理」。

勾股定理指出:

直角三角形兩直角邊(即「勾」,「股」)邊長平方和等於斜邊(即「弦」)邊長的平方。

也就是說,

設直角三角形兩直角邊為a和b,斜邊為c,那麼a2+

b2=c2勾股定理現發現約有400種證明方法,是數學定理中證明方法最多的定理之一。

勾股陣列

滿足勾股定理方程a2+b2

=c2的正整數組(a,b,c)。例如(3,4,5)就是一組勾股陣列。

由於方程中含有3個未知數,故勾股陣列有無數多組。

推廣如果將直角三角形的斜邊看作二維平面上的向量,將兩斜邊看作在平面直角座標系座標軸上的投影,則可以從另乙個角度考察勾股定理的意義。即,向量長度的平方等於它在其所在空間一組正交基上投影長度的平方之和。

21樓:無尋眭紅旭

勾股定理又稱商高定理、畢達哥拉斯定理,簡稱「畢氏定理」,是平面幾何中乙個基本而重要的定理。勾股定理說明,平面上的直角三角形的兩條直角邊的長度(古稱勾長、股長)的平方和等於斜邊長(古稱弦長)的平方。反之,若平面上三角形中兩邊長的平方和等於第三邊邊長的平方,則它是直角三角形(直角所對的邊是第三邊)。

勾股定理是人類早期發現並證明的重要數學定理之一。古埃及在西元前2023年的紙莎草就有(3,4,5)這一組勾股數,而古巴比倫泥板涉及的最大的乙個勾股陣列是(18541, 12709,13500)。在中國數學史中同樣源遠流長,是中算的重中之重。

《周髀算經》中將勾股定理表述為「勾股各自乘,並而開方除之」。古希臘發現勾股定理的是畢達哥拉斯,所以勾股定理又稱畢達哥拉斯定理。據說畢達哥拉斯證明了這個定理後,即斬了百頭牛作慶祝(百牛大祭),因此又稱百牛定理。

有些參考資料提到法國和比利時將勾股定理稱為驢橋定理,但驢橋定理就是等腰三角形定理,是指等腰三角形的二底角相等,非勾股定理。

什麼是勾股定理

22樓:匿名使用者

勾股定理是乙個基本的幾何定理,指直角三角形的兩條直角邊的平方和等於斜邊的平方。中國古代稱直角三角形為勾股形,並且直角邊中較小者為勾,另一長直角邊為股,斜邊為弦,所以稱這個定理為勾股定理,也有人稱商高定理。

勾股定理現約有500種證明方法,是數學定理中證明方法最多的定理之一。勾股定理是人類早期發現並證明的重要數學定理之一,用代數思想解決幾何問題的最重要的工具之一,也是數形結合的紐帶之一。在中國,周朝時期的商高提出了「勾三股四弦五」的勾股定理的特例。

在西方,最早提出並證明此定理的為西元前6世紀古希臘的畢達哥拉斯學派,他用演繹法證明了直角三角形斜邊平方等於兩直角邊平方之和。

23樓:提分一百

勾股定理的公式是什麼

24樓:匿名使用者

在平面上的乙個直角三角形中,兩個直角邊邊長的平方加起來等於斜邊長的平方。如果設直角三角形的兩條直角邊長度分別是a和b,斜邊長度是c,那麼a²+b²=c² 。

25樓:等_時光

勾股定理是只在直角三角形中成立的

即:直角三角形滿足兩直角邊的平方和等於斜邊的平方

或者:如果乙個三角形的三邊滿足其中兩邊的平方和等於第三邊,那麼這個三角形一定是直角三角形

26樓:

勾股定理是乙個基本的幾何定理,這個定理的內容是:直角三角形的兩條直角邊的平方和,等於斜邊的平方。

例如乙個直角三角形的兩條直角邊分別是 a 和 b,斜邊是c, 那麼a的平方=b的平方 + c的平方。

中國古代稱直角三角形為勾股形,並且直角邊中較小者為勾,另一長直角邊為股,斜邊為弦,所以稱這個定理為勾股定理。

27樓:傅淑蘭狄冬

最長的邊的平方等於短一點的兩邊的平方和。用勾股定理可判斷乙個三角形是不是直角三角形

28樓:卜穎穎

直角三角形兩直角邊(即「勾」,「股」)邊長平方和等於斜邊(即「弦」)邊長的平方。也就是說,設直角三角形兩直角邊為a和b,斜邊為c,那麼a^2+b^2=c^2。

29樓:禰騫聞人華婉

在任何乙個直角三角形中,兩條直角邊的長的平方和等於斜邊長的平方,這就叫做勾股定理。即勾的平方加股的平方等於弦的平方

30樓:代乾家旎旎

在乙個直角三角形中,兩直角邊分別為a,b斜邊為c,則有:a的平方加上b的平方之和等於c的平方!

31樓:在鴛鴦湖寄明信片的紅瑞木

勾股定理是初中數學中講的乙個基本的幾何定理,用公式表示就是a²+b²=c²。用文字描述就是直角三角形的兩條直角邊的平方和等於斜邊的平方。因為我國古代稱直角三角形為勾股形,短直角邊為勾,長直角邊為股,斜邊為弦。

所以被稱為勾股定理。

32樓:恭濟

勾三股四玄五,直角邊兩邊平方的和等於斜邊的平方。

33樓:匡扶正義

勾股定理魏德武證法到目前為止,可以說他的證法是所有勾股定理證法中最簡捷、最實用的首選方法。用四塊全等直角三角形邊長分別為a、b、c,組成二塊長方形面積(ab+ad=2ab),然後再根據前後面積不變的原理,將二塊長方形面積通過形變,轉化成一塊正方形面積;這樣既不要割補也不需求證,,就可輕而易舉地匯出直角三角形(2ab=c^2-(b-a)^2,化簡後:c^2=a^2+b^2.

)三條邊的數量關係。古人通常把直角三角形的二條邊長分別說成勾和股,所以勾股定理的由來因此而得名。

為什麼會有勾股定理什麼是勾股定理

勾股定理又稱畢達哥拉斯定理,其內容是 乙個直角三角形斜邊的平方,等於其兩個直角邊的平方和.其實漢漠拉比時代的巴比倫人早就發現了這一定理,而畢達哥拉斯只不過是第乙個對這一定理作了證明的人.關於畢達哥拉斯對這一定理的證明法現在已不存在,一般認為他是運用剖分式證明法.設a,b,c分別表示直角三角形的兩個直...

勾股定理怎麼算。是什麼公式,什麼是勾股定理,計算公式是什麼?

勾股定理計算 直角三角形的兩條直角邊的平方和等於斜邊的平方。a b c 勾股定理是乙個基本的幾何定理,指直角三角形的兩條直角邊的平方和等於斜邊的平方。中國古代稱直角三角形為勾股形,並且直角邊中較小者為勾,另一長直角邊為股,斜邊為弦,所以稱這個定理為勾股定理,也有人稱商高定理。勾股定理現約有500種證...

數學勾股定理,數學勾股定理

解 1 因為 ac 9cm,bc 12cm 所以 ab 15cm 勾股定理 由三角形面積公式可知 1 2 15 cd 1 2 9 12即 cd 108 15 7.2 2 以e為起點作兩條垂線分別垂直ac,ab於點f,g。由於ce是角acb的平分線 所以ef eg。設 ef eg x 由三角形面積公式...