1樓:花落雨沫
這就考驗空間想象能力了。鍛鍊空間想象能力,你可以先帶一些小方塊(出去買或者自己用蘿蔔啊、橡皮啊自己做)
怎樣由三檢視判斷幾何體或幾何體組成的小正方體個數?
2樓:匿名使用者
我看三檢視主要就是看俯檢視
假設俯檢視是:「□□
□□」主檢視是:「 □
□□」那麼左邊的一列高度都是1,右邊一列可能有1,也可能有2,具體就要看左檢視
那麼左檢視是:『 □
□□』左檢視是從左到右的圖
可以得知,後面一排都是1,前面一排有2
那麼根據右邊一列也有2可以得出在俯檢視上的個數是1 11 2全部加起來就是5個小正方體。
不懂可以再追問我,希望可以幫到你
3樓:匿名使用者
這就是考你的空間想象能力,你只能三個檢視參照著來看,看每乙個方塊在三檢視裡對應的分別是哪乙個方形。看得懂就看得懂,哪有什麼方法可言,要不你把圖發上來讓別人給你數。
怎樣由三檢視判斷幾何體或幾何體組成的小正方體個數
4樓:匿名使用者
我看三檢視主要就是看俯檢視
假設俯檢視是:「□□
□□」主檢視是:「 □
□□」那麼左邊的一列高度都是1,右邊一列可能有1,也可能有2,具體就要看左檢視
那麼左檢視是:『 □
□□』左檢視是從左到右的圖
可以得知,後面一排都是1,前面一排有2
那麼根據右邊一列也有2可以得出在俯檢視上的個數是1 11 2全部加起來就是5個小正方體。
不懂可以再追問我,希望可以幫到你
5樓:依雅香五河
這就是考你的空間想象能力,你只能三個檢視參照著來看,看每乙個方塊在三檢視裡對應的分別是哪乙個方形。看得懂就看得懂,哪有什麼方法可言,要不你把圖發上來讓別人給你數。
如何由三檢視判斷組成幾何體的小幾何體的個數? 謝了。。。**等。
6樓:
你好:先在頭腦裡想象各個部分會有幾個幾何體,然後分別在三檢視中標出各個位置的個數,檢驗是否正確!如果實在想象不出來,可以用食物比劃比劃!
如何根據三檢視確定小正方體個數
7樓:左岸居東
由三檢視到確定幾何體,應根據主檢視和俯檢視情況分析,再結合左檢視的情況定出幾何體,最後便可得出這個幾何體組合的小正方體個數。
通過三檢視確定組合圖形的小正方體的個數,關鍵是要弄清楚這個小正方體組合圖形共有多少行、多少列、每行每列中各有多少層,理清了這些行、列、層的數量。就比較好處理了。
8樓:張家梓
可以在俯檢視上標數字
9樓:匿名使用者
在主檢視、左檢視、俯檢視上數看到的正方形個數
10樓:焉覓姒巨集碩
如果沒有其他條件限制那麼就不能判斷。三個互相垂直的5*5*1的物體拼合組合的物體的三檢視會與5*5*5的立方體相同
怎樣由三檢視判斷幾何體或幾何體組成的小正方體個數? 10
11樓:匿名使用者
我看三檢視主要就是看俯檢視
假設俯檢視是:「□□
□□」主檢視是:「 □
□□」那麼左邊的一列高度都是1,右邊一列可能有1,也可能有2,具體就要看左檢視
那麼左檢視是:『 □
□□』左檢視是從左到右的圖
可以得知,後面一排都是1,前面一排有2
那麼根據右邊一列也有2可以得出在俯檢視上的個數是1 11 2全部加起來就是5個小正方體。
不懂可以再追問我,希望可以幫到你
12樓:匿名使用者
長對正,高平齊,寬相等,就ok了,不會看主要是你的三維想想能力不夠好,看著實體在拿著三檢視比較為什麼三檢視只是把立體的東西分成三個檢視表示了(我們學機械的以前還有6檢視反方向的6檢視),這個是要慢慢培養的。
13樓:匿名使用者
俯檢視是地面有的個數 主檢視是正面 主檢視的個數要減去最低下那一排的個數
怎樣求給出三檢視求幾何體中小正方體的個數
14樓:七哥寶寶
如果想象不出來就在紙上根據三檢視把幾何體畫出來,然後再數小正方體的個數,這時還是要有一定立體想象,因為你畫的一般是平面的……
15樓:西伯利亞的鋼板
按照我的經驗嘛……
先看俯檢視和左檢視,
在俯檢視最左側從上到下地把左檢視從左到右的高度記下來……再看主檢視,把主檢視從左到右的高度在俯檢視最上面從左到右地記下來……這想就能發現每行每列需要的最高層數,以此在俯檢視格仔裡標註……把格仔裡的數相加就是總塊數了……這樣子做幾遍就熟了……選我吧,純手打……
如圖,是乙個由若干個相同的小正方體組成的幾何體的三檢視,則組成這個幾何體的小正方體的個數是 (
16樓:流年
c解:綜合三視bai圖,第一du
行第zhi1列有
dao3個,專第一行第2列有1個,第一行第3列有2個;
第二屬行第1列有1個,第二行第2列沒有,第二行第3列有1個;
第三行第1列沒有,第三行第2列沒有,第三行第3列有1個;
一共有:3+1+2+1+1+1=9個,故選c.
已知幾何體的三檢視,想象對應的幾何體的結構特徵,並畫出它的直觀圖
下面是個豎著的長方體,底面是正方形,長方體上面頂著個圓錐體 這還不簡單,就像蘑菇啊 已知乙個幾何體的三檢視如圖所下,這個幾何體的結構特徵如何?試用斜二測畫法畫出它的直觀圖 看起來想乙個 寶塔形狀的,四面都是三角 底面是四方 四面三角椎體 四稜錐 四面都是全等三角 底面是正方形 已知乙個幾何體的三檢視...
幾何體的三檢視(單位 cm)如圖所示,則該幾何體的表面積是cm
由三檢視知,幾何體是乙個組合體,上面是乙個半球,半球的半徑是1,下面是乙個稜長為2,1,2的長方體和乙個半圓柱,組合體的表面積是包括三部分,要求的面積是 2 2 2 4 2 1 2 8 4 故答案為 8 4 某幾何體的三檢視 單位 cm 如圖所示,則此幾何體的表面積是 a 90cm2b 129cm2...
怎麼由幾何體的三檢視畫直觀圖,已知乙個幾何體的三檢視如下圖,大致畫出它的直觀圖,並求出它的表面積和體積
斜二測畫法只是立體圖的一種畫法而已,不能幫助將三檢視畫成立體圖的你這個難題我小時候也遇到了 我的解決辦法就是不斷的練習 先從簡單的正方體,長方體練起 然後是組合體 然後是複雜構形的 練習多了看到三檢視的時候就能夠浮現出立體圖的影子了 可以將三個檢視看作是乙個物體的三個面,用組合的方法往一起套,這樣可...