全等三角形的判定SAS定義,問題提出學習了三角形全等的判定方法即「SAS」「ASA」「AAS」「SSS」和直角三角形全等的判

2021-03-04 09:01:13 字數 2193 閱讀 7609

1樓:匿名使用者

兩邊和它們的夾角對應相等的兩個三角 形全等

2樓:匿名使用者

兩邊和所夾角對應相等,這兩個三角形全等

3樓:匿名使用者

兩條邊和乙個夾角都相等

【問題提出】學習了三角形全等的判定方法(即「sas」、「asa」、「aas」、「sss」)和直角三角形全等的判

4樓:低價

∠cbg=∠feh

∠g=∠h=90°

bc=ef

∴cg=fh,

在rt△acg和rt△dfh中,

ac=df

cg=fh

,∴rt△acg≌rt△dfh(hl),

∴∠a=∠d,

在△abc和△def中,

∠a=∠d

∠abc=∠def

ac=df

,∴△abc≌△def(aas);

(3)解:如圖,△def和△abc不全等;

(4)解:若∠b≥∠a,則△abc≌△def.故答案為:(1)hl;(4)∠b≥∠a.

全等三角形判定,aas和asa怎麼區分。

5樓:匿名使用者

aas(角角邊) 和asa(角邊角)主要的區分就是選擇哪條邊進行判斷,asa是兩角的夾邊,asa是除兩角夾邊以外的兩條邊的任意一條。具體如下:

1、aas表示角角邊,即已知兩個三角形的兩個角都相同,且兩角夾邊以外的任意一條邊長度相等,即可證明兩個三角形全等。如下圖所示:已知∠a=∠c,∠b=∠d,則這兩個角的非夾角邊,邊a和邊b相等或者邊c和邊d相等,則證明兩三角形全等。

2、asa表示角邊角,即已知兩個三角形的兩個角都相同,且兩角夾邊的長度相等,即可證明兩個三角形全等。如下圖所示:已知∠a=∠c,∠b=∠d,且該兩角夾邊,邊e=邊f,則可證明兩三角形全等。

全等三角形表示兩個形狀和面積都相等的三角形。證明全等三角形的方法有5種,分別用邊邊邊(sss)、邊角邊(sas)、角角邊(aas)、角邊角(asa)、和斜邊,直角邊(hl)來判定。

sss:表示只要能證明兩個三角形的三條邊,長度都一一對應相等,即可證明全等。

sas:表示兩條邊長度一一對應相等,且兩邊的夾角也相等,即可證明全等。

aas:表示兩個角一一對應相等,且除兩角夾邊以外的邊中,有一條是對應相等的,即可證明全等。

asa:表示兩個角,以及兩角的夾邊均一一對應相等,即可證明全等。

hl:表示直角三角形中,斜邊與直角邊中任意一條,與另乙個直角三角形一一對應相等,即可證明全等。

6樓:刀建設殳靜

∵ab∥ed

∴∠abe=∠e(兩直線平行,內錯角相等)

∵ab=ce,∠abe=∠e,bc=ed

∴△abc≌△ced(兩邊及其夾角對應相等的兩個三角形全等)

∴ac=cd(全等三角形的對應邊相等)

反思:一般的,在平面幾何中,要證兩個角或兩條線段相等時,通常可以借助證明這兩個角所在的兩個三角形全等,利用全等的性質可得對應角相等,這是很常用的方法。

三角形全等的判定定理有:邊邊邊(sss)、邊角邊(sas)、角邊角(asa)、角角邊(aas),那麼在實際中如何運用這些定理來解決問題呢?其基本思路如下:

(1)首先觀察待證的線段(角),存在於哪兩個可能全等的三角形之中。

(2)根據題目中已有的條件,對照全等判定的四條定理,分析採用哪條定理易證這兩個三角形全等,看還缺什麼條件。

(3)設法證出所缺條件,此時應注意所缺條件可能存在於另外一對易證的全等三角形中。

學習幾何的關鍵就是要學會總結,即總結解題方法,只要掌握了方法,遇見類似的問題就會很容易解決了。我建議你去了解一下輔導王,這個軟體和其它輔導軟體大不相同,它是一款網路智慧型輔導軟體,可以模擬人腦的思維解決每一道習題,而且解後反思都能給出一類問題的解決方法,再結合鞏固練習,能大幅提高課後學習的效率,達到事半功倍的效果。

7樓:匿名使用者

aas和asa其實是通用的。因為三角形內角和為180°,所以只要有一邊和任意兩個角相等,則第三個角必相等。從這個意義上來說,asa是aas的特例。

8樓:韶華夢斷

前者是兩個角相(aa)鄰且有不為這兩個角夾的邊(s),後者是兩個角相鄰且有被這兩個角夾的邊

9樓:匿名使用者

這個教科書上應該都有吧

三角形全等的判定,全等三角形判定方法有哪些?

判定公理 1 三組對應邊分別相等的兩個三角形全等 簡稱sss或 邊邊邊 這一條也說明了三角形具有穩定性的原因。2 有兩邊及其夾角對應相等的兩個三角形全等 sas或 邊角邊 3 有兩角及其夾邊對應相等的兩個三角形全等 asa或 角邊角 4 有兩角及其一角的對邊對應相等的兩個三角形全等 aas或 角角邊...

三角形全等的判定

1 三組對應邊分別相等的兩個三角形全等 簡稱sss或 邊邊邊 這一條也說明了三角形具有穩定性的原因。2 有兩邊及其夾角對應相等的兩個三角形全等 sas或 邊角邊 3 有兩角及其夾邊對應相等的兩個三角形全等 asa或 角邊角 4 有兩角及其一角的對邊對應相等的兩個三角形全等 aas或 角角邊 5 直角...

三角形全等與相似的定義,性質,判定的異同

問題 1 什麼樣的兩個三角形叫做全等三角形?回答 能夠完全重合的兩個三角形叫做全等三角形 性質 對應角相等,對應邊相等 問題 2.什麼樣的兩個三角形叫做相似三角形?回答 對應角相等,對應邊成比例的兩個三角形叫做相似三角形性質 對應角相等,對應邊成比例 判定 三角形全等 也就說必須滿足面積,對應的各邊...