1樓:電影全球通
此機構運動簡圖中1復合鉸鏈、無區域性自由度、5個虛約束。
此機構中有7個自由桿件,10個低副,0個高副。
故 自由度 f=3n-2pl-ph=3*7-2*10-0=1
2樓:生活小能手
付費內容限時免費檢視
回答1、物理學的自由度:
在力學裡,自由度指的是力學系統的獨立座標的個數。
一般而言,n 個質點組成的力學系統由 3n 個座標來描述。但力學系統中常常存在著各種約束,使得這 3n 個座標並不都是獨立的。對於 n 個質點組成的力學系統,若存在 m 個完整約束,則系統的自由度減為s=3n-m。
2、機械系統的自由度:
根據機械原理,機構具有確定運動時所必須給定的獨立運動引數的數目(亦即為了使機構的位置得以確定,必須給定的獨立的廣義座標的數目),稱為機構自由度,其數目常以f表示。
f=3n-(2pl +ph ) n:活動構件數,pl:低副約束數 ph:高副約束數
3、統計學的自由度:
在統計學中,自由度(df)指的是計算某一統計量時,取值不受限制的變數個數。通常df=n-k。其中n為樣本含量,k為被限制的條件數或變數個數,或計算某一統計量時用到其它獨立統計量的個數。
空間機構自由度的計算
也就是通過所有剛體的自由度數之和減去每乙個運動副所約束的自由度數。這種方法的優點是,便於設計分析人員的分析與計算。尤其在平面機構的自由度分析上,通過計算者識別虛約束與區域性自由度,幾乎可以完成大部分機構的自由度計算。
然而對於空間機構來說,由於虛約束與區域性自由度難以識別,而且機構本身的尺寸,約束的位置不同、機構的實際運動自由度會有很大的差異。該公式已經難以勝任空間機構的自由度計算任務。不過難以否認的是該公式在機械設計史上的突出貢獻,很多經典的機構,機械裝置都是基於該公式設計而成的。
自由度數k=3n-2pl-ph
三個能動的件 三個轉軸那塊的低副
算下來自由度3x3-2x3
空間機構自由度 乙個桿件(剛體),在空間上完全沒有約束,那麼它可以在3個正交方向上平動,還可以以三個正交方向為軸進行轉動,那麼就有6個自由度。
提問謝謝
回答希望能幫助到您
更多16條
計算自由度
3樓:匿名使用者
在可動連線處找運動副。轉動副為鉸鏈連線,一般用圓圈代替。
自由度計算
4樓:知識青年
自由度數 k=3n-2pl-ph
3個能動的件 三個轉軸那塊的低副 兩個齒輪接觸點的高副,算下來自由度等於3*3-2*3-2=1。
定軸輪系自由度為1,周轉輪系中,行星輪系自由度為1,差動輪系自由度為2,從圖中可知,3,4,5組成的是差動輪系(兩個中心輪是不固定的),自由度的判讀不一定要用平面自由度計算公式。再者,平面自由度計算公式是錯誤的,它只適用於大多數情況,很多情況是不成立的。
5樓:一笑而過
這個機構有4個活動構件;有5個低副、1個高副;有1個區域性自由度(滾子d的轉動);有2個虛約束(滾子d與件4槽,兩側之一;e與f兩個之一)。自由度是1 。
自由度 = 3×4 - 2×5 - 1 = 1 。
6樓:生活小能手
付費內容限時免費檢視
回答1、物理學的自由度:
在力學裡,自由度指的是力學系統的獨立座標的個數。
一般而言,n 個質點組成的力學系統由 3n 個座標來描述。但力學系統中常常存在著各種約束,使得這 3n 個座標並不都是獨立的。對於 n 個質點組成的力學系統,若存在 m 個完整約束,則系統的自由度減為s=3n-m。
2、機械系統的自由度:
根據機械原理,機構具有確定運動時所必須給定的獨立運動引數的數目(亦即為了使機構的位置得以確定,必須給定的獨立的廣義座標的數目),稱為機構自由度,其數目常以f表示。
f=3n-(2pl +ph ) n:活動構件數,pl:低副約束數 ph:高副約束數
3、統計學的自由度:
在統計學中,自由度(df)指的是計算某一統計量時,取值不受限制的變數個數。通常df=n-k。其中n為樣本含量,k為被限制的條件數或變數個數,或計算某一統計量時用到其它獨立統計量的個數。
空間機構自由度的計算
也就是通過所有剛體的自由度數之和減去每乙個運動副所約束的自由度數。這種方法的優點是,便於設計分析人員的分析與計算。尤其在平面機構的自由度分析上,通過計算者識別虛約束與區域性自由度,幾乎可以完成大部分機構的自由度計算。
然而對於空間機構來說,由於虛約束與區域性自由度難以識別,而且機構本身的尺寸,約束的位置不同、機構的實際運動自由度會有很大的差異。該公式已經難以勝任空間機構的自由度計算任務。不過難以否認的是該公式在機械設計史上的突出貢獻,很多經典的機構,機械裝置都是基於該公式設計而成的。
自由度數k=3n-2pl-ph
三個能動的件 三個轉軸那塊的低副
算下來自由度3x3-2x3
空間機構自由度 乙個桿件(剛體),在空間上完全沒有約束,那麼它可以在3個正交方向上平動,還可以以三個正交方向為軸進行轉動,那麼就有6個自由度。
提問謝謝
回答希望能幫助到您
更多16條
7樓:
這個機構有4個活動構件,有兩個固定鉸鏈約束,兩個活動鉸鏈約束,2個滑塊是光滑約束,構件4裡面的滾子是區域性自由度,構件4與機架5的兩處接觸e、f是虛約束。
自由度是1, 4個活動構件,5個低副,1個高副4x3-6x2-1x1=1
開始的錯了,以為滾子焊在件4上面了。
人手的自由度多少?如何計算?
8樓:末你要
人手一共24個自由度。拇指5個自由度,其餘四指各有4個自由度(2個關節的屈曲1個關節的屈曲及側擺),手掌1個自由度(弧度),手腕2個自由度(外展和屈曲)。
人的手腕可以俯仰擺動兩個自由度。前臂可以旋轉,乙個自由度,肘關節乙個自由度,大臂可以旋轉乙個自由度,肩部可以前後,上下兩個方向擺動。
9樓:匿名使用者
人從手指到肩部共有27個自由度。
五指共九個指關節,為轉動副,每個1自由度,共9自由度。
除大拇指外的四指的指根為球銷副,每個兩自由度,共8自由度。
大拇指根為球面副,有3自由度。
手掌1個自由度(弧度)。
手腕2個自由度(外展和屈曲)。
手肘2個自由度。
肩膀2個自由度。
故共27自由度。
擴充套件資料不同自由度的特點
1、乙個自由度
(1)乙個直線運動,構成直線。
(2)乙個旋轉運動,構成曲線。
2、兩個自由度
(1)兩個直線運動,構成平面。
(2)乙個直線運動加乙個在直線運動所在平面內的旋轉運動,構成平面。
(3)乙個直線運動加乙個不在直線運動所在平面內的旋轉運動,構成圓柱曲面。
3、三個自由度
(1)三個直線運動,構成立方體。
(2)兩個直線運動和乙個旋轉運動,構成圓柱體。
(3)乙個直線運動和兩個旋轉運動構成球體。
(4)三個旋轉運動,構成球體。
要達到空間任意一點,原則上需要3個運動軸,而把一件工具送到相對於工件的一定位置時又需要3個運動軸。因此,一台通用機械手能夠達到空間的任意點,並將工具送到相對於工件的任意位置,最低限度需要6個運動軸。其中位置自由度3個,姿勢自由度3個。
10樓:
手指關節處相當於轉動副,有乙個自由度,(拇指乙個,其餘四指各兩個,共9個);指根部相當於球銷副,有兩個自由度,(五指共10個);手腕處相當於球銷副,有兩個自由度,(可以實現擺手和彎曲)。因此總計21個自由度。
11樓:匿名使用者
人的手有五個自由度,達文西機械人有七個自由度
12樓:匿名使用者
20個自由度,出自熊有倫教授編著的《機械人學》
五指共九個指關節,為轉動副,每個1自由度,共9自由度除大拇指外的四指的指根為球銷副,每個兩自由度,共8自由度大拇指根為球面副,有3自由度
故共20自由度
不包括腕部自由度,一般來說腕部的自由度(3個)只算在機械臂的自由度中(7個)
13樓:匿名使用者
360度,你看你的手能不能轉乙個圈
14樓:傑然不同
學機械的試著回答一下。
人手一共24個自由度。拇指5個自由度,其餘四指各有4個自由度(2個關節的屈曲1個關節的屈曲及側擺),手掌1個自由度(弧度),手腕2個自由度(外展和屈曲)。
我也是機械靈巧手學習的入門,歡迎交流。
統計學中的自由度是什麼意思
15樓:咪浠w眯兮
統計學上,自由度是指當以樣本的統計量來估計總體的引數時,樣本中獨立或能自由變化的資料的個數,稱為該統計量的自由度。一般來說,自由度等於獨立變數減掉其衍生量數。舉例來說,變異數的定義是樣本減平均值(乙個由樣本決定的衍生量),因此對n個隨機樣本而言,其自由度為n-1。
數學上,自由度是乙個隨機向量的維度數,也就是乙個向量能被完整描述所需的最少單位向量數。舉例來說,從電腦螢幕到廚房的位移能夠用三維向量
來描述,因此這個位移向量的自由度是3。自由度也通常與這些向量的座標平方和,以及卡方分布中的引數有所關 。
統計學自由度的應用如下:
16樓:小小芝麻大大夢
統計學上的自由度是指當以
樣本的統計量來估計總體的引數時, 樣本中獨立或能自由變化的自變數的個數,稱為該統計量的自由度。 統計學上的自由度包括兩方面的內容:
(1)首先,在估計總體的平均數時,由於樣本中的 n 個數都是相互獨立的,從其中抽出任何乙個數都不影響其他資料,所以其自由度為n。
在估計總體的方差時,使用的是離差平方和。只要n-1個數的離差平方和確定了,方差也就確定了;因為在均值確定後,如果知道了其中n-1個數的值,第n個數的值也就確定了。這裡,均值就相當於乙個限制條件,由於加了這個限制條件,估計總體方差的自由度為n-1。
(2)其次,統計模型的自由度等於可自由取值的自變數的個數。如在回歸方程中,如果共有p個引數需要估計,則其中包括了p-1個自變數(與截距對應的自變數是常量1)。因此該回歸方程的自由度為p-1。
17樓:demon陌
在統計學中,自由度指的是計算某一統計量時,取值不受限制的變數個數。通常df=n-k。其中n為樣本含量,k為被限制的條件數或變數個數,或計算某一統計量時用到其它獨立統計量的個數。
自由度通常用於抽樣分布中。
首先,在估計總體的平均數時,由於樣本中的 n 個數都是相互獨立的,從其中抽出任何乙個數都不影響其他資料,所以其自由度為n。
在估計總體的方差時,使用的是離差平方和。只要n-1個數的離差平方和確定了,方差也就確定了;因為在均值確定後,如果知道了其中n-1個數的值,第n個數的值也就確定了。這裡,均值就相當於乙個限制條件,由於加了這個限制條件,估計總體方差的自由度為n-1。
其次,統計模型的自由度等於可自由取值的自變數的個數。如在回歸方程中,如果共有p個引數需要估計,則其中包括了p-1個自變數(與截距對應的自變數是常量1)。因此該回歸方程的自由度為p-1。
在乙個包含n個個體的總體中,平均數為m。知道了n-1個個體時,剩下的乙個個體不可以隨意變化。為什麼總體方差計算,是除以n而不是n-1呢?
方差是實際值與期望值之差平方的期望值,所以知道總體個數n時方差應除以n,除以n-1時是方差的乙個無偏估計。
機械設計基礎自由度計算,機械設計基礎自由度到底怎麼計算啊?
自由度數 k 3n 2p5 p4 3 6 2 8 1 1 機械設計基礎自由度到底怎麼計算啊?20 機械設計製造及其自動化,指研究各種工業機械裝備及機電產品從設計 製造 執行控制到生產過程的企業管理的綜合技術學科。培養具備機械設計製造基礎知識與應用能力,能在工業生產第一線從事機械製造領域內的設計製造 ...
有什麼好玩,自由度高的遊戲,有什麼自由度高的大型單機遊戲?要3D的
最近在玩全職大師,首款雙角色切換對戰網遊。突破性的開創了雙角色切換tag系統,並加入了豐富的動作,射擊元素,通過更強的操作感和打擊感為使用者帶來顛覆性的戰鬥體驗。同時,遊戲設計了多種對戰模式和pve玩法,讓玩家領略次時代對戰網遊的獨特魅力 血氣方剛的無賴,俠盜獵車手,殺死了真正的東西 上古卷軸 輻射...
請問這個構件的平面自由度怎麼計算
感覺構件的平面自由度為零。也就是整個構件不能運動。除非d點有乙個滑塊或是乙個有至少乙個自由度的連線。誰幫忙看下這兩個機構的自由度怎麼算 自由度計算 方法相bai對固du定沒有給出具體 無 zhi法具體計算,但是自由度dao計算都遵循相回同的規則 答 計算公式 f 3n 2pl ph n 活動構件數,...