1樓:諸葛狗蛋
在數學裡,將平方是負數的數定義為純虛數。所有的虛數都是複數。這種數有乙個專門的符號「i」(imaginary),它稱為虛數單位。
定義為i^2=-1。但是虛數是沒有算術根這一說的,所以√(-1)=±i。對於z=a+bi,也可以表示為e的ia次方的形式,其中e是常數,i為虛數單位,a為虛數的幅角,即可表示為z=cosa+isina.
不過在電子等行業中,因為i通常用來表示電流,所以虛數單位用j來表示。
虛數沒有正負可言。不是實數的複數,即使是純虛數,也不能比較大小。1<2是對的,但1+i<2+i是錯的。
我們可以在平面直角座標系中畫出虛數系統。如果利用橫軸表示全體實數,那麼縱軸即可表示虛數。整個平面上每一點對應著乙個複數,稱為復平面。橫軸和縱軸也改稱為實軸和虛軸。
「虛數」這個名詞是17世紀著名數學家、哲學家笛卡爾創制,因為當時的觀念認為這是真實不存在的數字。後來發現虛數可對應平面上的縱軸,與對應平面上橫軸的實數同樣真實。
虛數 - i的性質
的高次方會不斷作以下的迴圈:
i1 = i
i2 = - 1
i3 = - i
i4 = 1
i5 = i
i6 = - 1...
由於虛數特殊的運算規則,出現了下列算式
i1 + i2 + i3 + i4 = 0
由於虛數特殊的運算規則,出現了符號 ω
ω2 + ω + 1 = 0
ω3 = 1的簡式。
如果再將這個概念擴去,就可以組成四元數(quaternion)、八元數(octonion)等特殊數學範疇。
而這些虛數都是不能比較的:
1 < 2→成立 但 1 + i < 2 + i卻不成立
因為這些虛數並不是真正存在的。
證明:如果i > 0,則 − 1 > 0,矛盾。
如果i = 0,則 − 1 = 0,矛盾。
如果i < 0,則 − 1 > 0,矛盾。
由此可知虛數並不存在,
所以無法用大小來比較。
2樓:匿名使用者
與實數相對的。。。根號(-1)就是虛數。。表示為 i 。 a+bi (ab是實數)表示所有複數。。複數包括實數和虛數。
3樓:匿名使用者
實部為0,虛部不為0的複數,其平方為負數
4樓:匿名使用者
去看吧。
5樓:匿名使用者
虛數即為平方為負數的數
什麼是虛數?虛數的定義是什麼?
6樓:匿名使用者
虛數是形如a+b*i的數,其中a,b是實數,且b≠0,i² = - 1。
虛數這個名詞是17世紀著名數學家笛卡爾創立,因為當時的觀念認為這是真實不存在的數字。後來發現虛數a+b*i的實部a可對應平面上的橫軸,虛部b與對應平面上的縱軸,這樣虛數a+b*i可與平面內的點(a,b)對應。
首先,假設有一根數軸,上面有兩個反向的點:+1和-1。這根數軸的正向部分,可以繞原點旋轉。顯然,逆時針旋轉180度,+1就會變成-1。這相當於兩次逆時針旋轉90度。
因此,我們可以得到下面的關係式:(+1) * (逆時針旋轉90度) * (逆時針旋轉90度) = (-1),如果把+1消去,這個式子就變為:(逆時針旋轉90度)^2 = (-1) ,將"逆時針旋轉90度"記為 i :
i^2 = (-1)。
擴充套件資料
一、虛數加法的物理意義
虛數的引入,大大方便了涉及到旋轉的計算。比如,物理學需要計算"力的合成"。假定乙個力是 3 + i ,另乙個力是 1 + 3i ,計算合成力。
根據"平行四邊形法則",你馬上得到,合成力就是 ( 3 + i ) + ( 1 + 3i ) = ( 4 + 4i )。
二、虛數的作用
如果涉及到旋轉角度的改變,處理起來更方便。比如,一條船的航向是 3 + 4i 。如果該船的航向,逆時針增加45度,計算新航向。
45度的航向就是 1 + i 。計算新航向,只要把這兩個航向 3 + 4i 與 1 + i 相乘就可以了(原因在下一節解釋):( 3 + 4i ) * ( 1 + i ) = ( -1 + 7i )所以,該船的新航向是 -1 + 7i 。
如果航向逆時針增加90度,就更簡單了。因為90度的航向就是 i ,所以新航向等於:( 3 + 4i ) * i = ( -4 + 3i )。
7樓:容桂花壽戌
虛數是指平方是負數的數。虛數這個名詞是17世紀著名數學家笛卡爾創制,因為當時的觀念認為這是真實不存在的數字。後來發現虛數可對應平面上的縱軸,與對應平面上橫軸的實數同樣真實。
簡要介紹
實軸和虛軸
虛數可以指以下含義:
(1)[unreliablefigure]:虛假不實的數字。
(2)[imaginarypart]:複數中a+bi,b叫虛部,a叫實部。
(3)[imaginarynumber]:漢語中不表明具體數量的詞。
如果有數平方是負數的話,那個數就是虛數了;所有的虛數都是複數。「虛數」這個名詞是17世紀著名數學家笛卡爾創制,因為當時的觀念認為這是真實不存在的數字。後來發現虛數可對應平面上的縱軸,與對應平面上橫軸的實數同樣真實。
虛數軸和實數軸構成的平面稱複數平面,復平面上每一點對應著乙個複數。數學中的虛數
在數學裡,將平方是負數的數定義為純虛數。所有的虛數都是複數。定義為i^2=-1。
但是虛數是沒有算術根這一說的,所以±√(-1)=±i。對於z=a+bi,也可以表示為e的ia次方的形式,其中e是常數,i為虛數單位,a為虛數的幅角,即可表示為z=cosa+isina。實數和虛數組成的一對數在複數範圍內看成乙個數,起名為複數。
虛數沒有正負可言。不是實數的複數,即使是純虛數,也不能比較大小。
這種數有乙個專門的符號「i」(imaginary),它稱為虛數單位。不過在電子等行業中,因為i通常用來表示電流,所以虛數單位用j來表示。
·實際意義
我們可以在平面直角座標系中畫出虛數系統。如果利用橫軸表示全體實數,那麼縱軸即可表示虛數。整個平面上每一點對應著乙個複數,稱為復平面。橫軸和縱軸也改稱為實虛數
8樓:漆玉英孟春
在數學裡,將平方是負數的數定義為純虛數。所有的虛數都是複數。這種數有乙個專門的符號「i」(imaginary),它稱為虛數單位。
定義為i^2=-1。但是虛數是沒有算術根這一說的,所以√(-1)=±i。對於z=a+bi,也可以表示為e的ia次方的形式,其中e是常數,i為虛數單位,a為虛數的幅角,即可表示為z=cosa+isina.
不過在電子等行業中,因為i通常用來表示電流,所以虛數單位用j來表示。
9樓:幹同書但壬
(1)[unreliable
figure]∶虛假不實的數字(2)[imaginary
part]∶複數中a+bi,b不等於零時bi叫虛數(3)[英文]:imaginary
number漢語中不表明具體數量的詞。
在數學裡,將平方是負數的數定義為純虛數。所有的虛數都是複數。這種數有乙個專門的符號「i」(imaginary),它稱為虛數單位。
定義為i^2=-1。但是虛數是沒有算術根這一說的,所以√(-1)=±i。對於z=a+bi,也可以表示為e的ia次方的形式,其中e是常數,i為虛數單位,a為虛數的幅角,即可表示為z=cosa+isina.
不過在電子等行業中,因為i通常用來表示電流,所以虛數單位用j來表示。
福擔弟杆郗訪甸詩鼎澗虛數沒有正負可言。不是實數的複數,即使是純虛數,也不能比較大小。
我們可以在平面直角座標系中畫出虛數系統。如果利用橫軸表示全體實數,那麼縱軸即可表示虛數。整個平面上每一點對應著乙個複數,稱為復平面。橫軸和縱軸也改稱為實軸和虛軸。
「虛數」這個名詞是17世紀著名數學家、哲學家笛卡爾創制,因為當時的觀念認為這是真實不存在的數字。後來發現虛數可對應平面上的縱軸,與對應平面上橫軸的實數同樣真實。
10樓:匿名使用者
虛數是相對於實數域而言,新擴充的乙個數域。聯合實數域一起,構成了更大複數域。
這裡首先要介紹虛數單位i, 規定 i²=-1;
複數的一般形式為 z=a+bi, 其中a,b均為實數;
當a=0,z表示純虛數;
當b=0, z表示實數。
11樓:寧誠嵇娟
a+bi(a,b屬r)的數叫復福擔弟杆郗訪甸詩鼎澗數,其中i叫虛數單位。對於複數a+bi,當且僅當b=0時,它是實數,當且僅當a=b=0時,它是實數0,當b不等於0時,叫複數,當a=0且b不等於0時,叫做純虛數
12樓:聞時芳鄧嫻
虛數不表示實際的物理意義,它只是為計算過程方便而引進的。其中虛數還包括非純虛數和純虛數,非純虛數的形式是a+bi,而純虛數的形式是bi,其中i是單位。
13樓:匿名使用者
負數開平方,在實數範圍內無解。
數學家們就把這種運算的結果叫做虛數,因為這樣的運算在實數範圍內無法解釋,所以叫虛數。
實數和虛數組成的一對數在複數範圍內看成乙個數,起名為複數。
於是,實數成為特殊的複數(缺序數部分),虛數也成為特殊的複數(缺實數部分)。
虛數單位為i, i即根號負1。
3i為虛數,即根號(-3), 即3×根號(-1)2+3i為複數,(實數部分為2,虛數部分為3i)
14樓:生蘭英漆雁
在數學中,虛數就是形如a+b*i的數,其中a,b是實數,且b≠0,i2=-
1。虛數這個名詞是17世紀著名數學家笛卡爾創立,因為當時的觀念認為這是真實不存在的數字。後來發現虛數a+b*i的實部a可對應平面上的橫軸虛部b與對應平面上的縱軸,這樣虛數a+b*i可與平面內的點(a,b)對應。
15樓:邵鴻振樊北
數學中的虛數
在數學裡,將平方是負數的數定義為純虛數。所有的虛數都是複數。定義為i^2=-1。
16樓:曲起雲霜乙
虛數就是指數冪是負數的數,當然了,這樣的數實際上是虛構的i滿足i²=-1
2i就是2i,虛數只是說用這個字母來代替實際上表示不出來的量。z表示x+yi(實部和虛部)
z上面一橫唸作z拔,是z的共軛,它等於x-yi。z+z(上面有一橫)就是2x
17樓:奕綺玉道名
虛數包含i,複數是由實數和虛數組成的a+bi(a為實數,b為0時,則a+bi為實數,b≠0時,a+bi就為複數,當a=0,b≠0時就為純虛數
18樓:by碧小落
在數學裡,將平方
是負數的數定義為純虛數
負數開平方,在實數範圍內無解。
數學家們就把這種運算的結果叫做虛數,因為這樣的運算在實數範圍內無法解釋,所以叫虛數。
實數和虛數組成的一對數在複數範圍內看成乙個數,起名為複數。
於是,實數成為特殊的複數(缺序數部分),虛數也成為特殊的複數(缺實數部分)。
虛數單位為i, i即根號負1。
3i為虛數,即根號(-3), 即3×根號(-1)2+3i為複數,(實數部分為2,虛數部分為3i)
虛數是什麼,什麼是虛數
一句話就是 平方是負數的或根號內是負數的數。討論為 虛數是指實數以外的複數,其中實部為0的虛數稱為純虛數。在數學中,虛數就是形如a b i的數,其中a,b是實數,且b 0,i 1。虛數這個名詞是17世紀著名數學家笛卡爾創立,因為當時的觀念認為這是真實不存在的數字。後來發現虛數a b i的實部a可對應...
實數加虛數,為什麼等於複數?虛數是什麼啊
複數由實數和虛數構成。複數的形式的a bi,a和b為實數,i是虛數單位,當b o時,a bi是實數。如果c是實數,那麼 a bi c a c bi,也是複數的形式,所以實數加虛數是複數。某些複數開根號,在實際當中沒有意義,但也是數,於是產生了虛數。定義虛數i的平方等於負一,比如3加上i等於3 i,而...
複數實數虛數和純虛數之間是什麼關係
複數包括實數和虛數,純虛數就是虛數 z a bi,z為複數,a為實數,bi為虛數,a 0時,z就是虛數 b 0時,z就是實數。虛數和實數有著同等地位,二者合在一起成為複數。乙個複數由實部和虛部組成,用z a bi表示,其中a,b是任意實數。如果乙個複數只有虛數部分,則稱這個複數是純虛數。很多時候複數...