1樓:cy辭言
y=c(c為常數) y'=0
y=x^n y'=nx^(n-1)
y=a^x y'=a^xlna
y=e^x y'=e^x
y=logax y'=logae/x
y=lnx y'=1/x
y=sinx y'=cosx
y=cosx y'=-sinx
y=tanx y'=1/cos^2x
y=cotx y'=-1/sin^2x
y=arcsinx y'=1/√1-x^2
y=arccosx y'=-1/√1-x^2
y=arctanx y'=1/1+x^2
y=arccotx y'=-1/1+x^2
拓展資料:
導數(derivative)是微積分中的重要基礎概念。當函式y=f(x)的自變數x在一點x0上產生乙個增量δx時,函式輸出值的增量δy與自變數增量δx的比值在δx趨於0時的極限a如果存在,a即為在x0處的導數,記作f'(x0)或df(x0)/dx。
導數是函式的區域性性質。乙個函式在某一點的導數描述了這個函式在這一點附近的變化率。如果函式的自變數和取值都是實數的話,函式在某一點的導數就是該函式所代表的曲線在這一點上的切線斜率。
導數的本質是通過極限的概念對函式進行區域性的線性逼近。例如在運動學中,物體的位移對於時間的導數就是物體的瞬時速度。
導數的計算
計算已知函式的導函式可以按照導數的定義運用變化比值的極限來計算。在實際計算中,大部分常見的解析函式都可以看作是一些簡單的函式的和、差、積、商或相互復合的結果。只要知道了這些簡單函式的導函式,那麼根據導數的求導法則,就可以推算出較為複雜的函式的導函式。
導數的求導法則
由基本函式的和、差、積、商或相互復合構成的函式的導函式則可以通過函式的求導法則來推導。基本的求導法則如下:
1、求導的線性:對函式的線性組合求導,等於先對其中每個部分求導後再取線性組合(即①式)。
2、兩個函式的乘積的導函式:一導乘二+一乘二導(即②式)。
3、兩個函式的商的導函式也是乙個分式:(子導乘母-子乘母導)除以母平方(即③式)。
4、如果有復合函式,則用鏈式法則求導。
口訣常為零,冪降次
對倒數(e為底時直接倒數,a為底時乘以1/lna)
指不變(特別的,自然對數的指數函式完全不變,一般的指數函式須乘以lna)
正變餘,餘變正
切割方(切函式是相應割函式(切函式的倒數)的平方)
割乘切,反分式
2樓:匿名使用者
函式導數公式
這裡將列舉幾個基本的函式的導數以及它們的推導過程:
1.y=c(c為常數) y'=0
2.y=x^n y'=nx^(n-1)
3.y=a^x y'=a^xlna
y=e^x y'=e^x
4.y=logax y'=logae/x
y=lnx y'=1/x
5.y=sinx y'=cosx
6.y=cosx y'=-sinx
7.y=tanx y'=1/cos^2x
8.y=cotx y'=-1/sin^2x
9.y=arcsinx y'=1/√1-x^2
10.y=arccosx y'=-1/√1-x^2
11.y=arctanx y'=1/1+x^2
12.y=arccotx y'=-1/1+x^2
在推導的過程中有這幾個常見的公式需要用到:
中g(x)看作整個變數,而g'(x)中把x看作變數』
2.y=u/v,y'=(u'v-uv')/v^2
3.y=f(x)的反函式是x=g(y),則有y'=1/x'
證:1.顯而易見,y=c是一條平行於x軸的直線,所以處處的切線都是平行於x的,故斜率為0。
用導數的定義做也是一樣的:y=c,⊿y=c-c=0,lim⊿x→0⊿y/⊿x=0。
2.這個的推導暫且不證,因為如果根據導數的定義來推導的話就不能推廣到n為任意實數的一般情況。在得到 y=e^x y'=e^x和y=lnx y'=1/x這兩個結果後能用復合函式的求導給予證明。
3.y=a^x,
⊿y=a^(x+⊿x)-a^x=a^x(a^⊿x-1)
⊿y/⊿x=a^x(a^⊿x-1)/⊿x
如果直接令⊿x→0,是不能匯出導函式的,必須設乙個輔助的函式β=a^⊿x-1通過換元進行計算。由設的輔助函式可以知道:⊿x=loga(1+β)。
所以(a^⊿x-1)/⊿x=β/loga(1+β)=1/loga(1+β)^1/β
顯然,當⊿x→0時,β也是趨向於0的。而limβ→0(1+β)^1/β=e,所以limβ→01/loga(1+β)^1/β=1/logae=lna。
把這個結果代入lim⊿x→0⊿y/⊿x=lim⊿x→0a^x(a^⊿x-1)/⊿x後得到lim⊿x→0⊿y/⊿x=a^xlna。
可以知道,當a=e時有y=e^x y'=e^x。
4.y=logax
⊿y=loga(x+⊿x)-logax=loga(x+⊿x)/x=loga[(1+⊿x/x)^x]/x
⊿y/⊿x=loga[(1+⊿x/x)^(x/⊿x)]/x
因為當⊿x→0時,⊿x/x趨向於0而x/⊿x趨向於∞,所以lim⊿x→0loga(1+⊿x/x)^(x/⊿x)=logae,所以有
lim⊿x→0⊿y/⊿x=logae/x。
可以知道,當a=e時有y=lnx y'=1/x。
這時可以進行y=x^n y'=nx^(n-1)的推導了。因為y=x^n,所以y=e^ln(x^n)=e^nlnx,
所以
5.y=sinx
⊿y=sin(x+⊿x)-sinx=2cos(x+⊿x/2)sin(⊿x/2)
⊿y/⊿x=2cos(x+⊿x/2)sin(⊿x/2)/⊿x=cos(x+⊿x/2)sin(⊿x/2)/(⊿x/2)
所以
6.類似地,可以匯出y=cosx y'=-sinx。
7.y=tanx=sinx/cosx
y'=[(sinx)'cosx-sinx(cos)']/cos^2x=(cos^2x+sin^2x)/cos^2x=1/cos^2x
8.y=cotx=cosx/sinx
y'=[(cosx)'sinx-cosx(sinx)']/sin^2x=-1/sin^2x
9.y=arcsinx
x=siny
x'=cosy
y'=1/x'=1/cosy=1/√1-sin^2y=1/√1-x^2
10.y=arccosx
x=cosy
x'=-siny
y'=1/x'=-1/siny=-1/√1-cos^2y=-1/√1-x^2
11.y=arctanx
x=tany
x'=1/cos^2y
y'=1/x'=cos^2y=1/sec^2y=1/1+tan^2x=1/1+x^2
12.y=arccotx
x=coty
x'=-1/sin^2y
y'=1/x'=-sin^2y=-1/csc^2y=-1/1+cot^2y=-1/1+x^2
另外在對雙曲函式shx,chx,thx等以及反雙曲函式arshx,archx,arthx等和其他較複雜的復合函式求導時通過查閱導數表和運用開頭的公式與
4.y=u土v,y'=u'土v'
5.y=uv,y=u'v+uv'
均能較快捷地求得結果。
3樓:匿名使用者
c'=0
x^m=mx^(m-1)
sinx'=cosx,cosx'=-sinx,tanx'=sec^2x
a^x'=a^xlna,e^x'=e^x
lnx'=1/x,log(a,x)'=1/(xlna)(f±g)'=f'±g'
(fg)'=f'g+fg'
(f/g)'=(f'g-fg')/g^2
4樓:匿名使用者
基本函式求導公式:
y=x^n, y'=nx^(n-1)
y=a^x, y'=a^xlna
y=e^x, y'=e^x
y=log(a)x ,y'=1/x lnay=lnx y'=1/x
y=sinx y'=cosx
y=cosx y'=-sinx
y=tanx y'=1/cos²x
y=cotanx y'=-1/sin²x
y=arcsinx y'=1/√(1-x²)y=arccosx y'=-1/√(1-x²)y=arctanx y'=1/(1+x²)y=arccotanx y'=-1/(1+x²)希望對您有所幫助。
高中全部導數公式總結
5樓:愛做作業的學生
常用導數公式:1.y=c(c為常數),y'=0 、2.
y=x^n,y'=nx^(n-1) 、3.y=a^x,y'=a^xlna,y=e^x y'=e^x、4.y=logax,y'=﹙logae﹚/x,y=lnx y'=1/x、5.
y=sinx,y'=cosx、6.y=cosx,y'=-sinx
一、 c'=0(c為常數函式)
二、 (x^n)'= nx^(n-1) (n∈q*);熟記1/x的導數
三、(sinx)' = cosx 、(cosx)' = - sinx 、(e^x)' = e^x 、(a^x)' = (a^x)lna (ln為自然對數)、(inx)' = 1/x(ln為自然對數)、(logax)' =x^(-1) /lna(a>0且a不等於1) 、(x^1/2)'=[2(x^1/2)]^(-1) 、(1/x)'=-x^(-2)
四、導數的四則運算法則(和、差、積、商):①(u±v)'=u'±v' ②(uv)'=u'v+uv' ③(u/v)'=(u'v-uv')/ v^2
擴充套件資料
導數的計算
計算已知函式的導函式可以按照導數的定義運用變化比值的極限來計算。在實際計算中,大部分常見的解析函式都可以看作是一些簡單的函式的和、差、積、商或相互復合的結果。只要知道了這些簡單函式的導函式,那麼根據導數的求導法則,就可以推算出較為複雜的函式的導函式。
導數的求導法則
由基本函式的和、差、積、商或相互復合構成的函式的導函式則可以通過函式的求導法則來推導。基本的求導法則如下:
1、求導的線性:對函式的線性組合求導,等於先對其中每個部分求導後再取線性組合(即①式)。
2、兩個函式的乘積的導函式:一導乘二+一乘二導(即②式)。
3、兩個函式的商的導函式也是乙個分式:(子導乘母-子乘母導)除以母平方(即③式)。
4、如果有復合函式,則用鏈式法則求導。
高中數學如何用導數求切線方程,如何用導數求切線方程
這裡說明一下一定要看一下給出的點在不在曲線上,還有就是過一點做曲線的切線可能不僅僅只有一條切線,即使是過曲線上一點做切線,可能也會有多個切線,特別是高次曲線之類的。還說明一點切線的定義你一定要搞清楚,不是說切線與曲線一定只有一個交點,最簡單的例子就是y sinx,y 1是切線但是有無數個交點,切線準...
求高中物理公式,求高中全部物理公式
求高中全部物理公式 f ma a vt v0 t,其餘的都可以推導出來。高中物理公式 三 電磁學。一 直流電路。1 電流強度的定義 i i nesv 2 電阻定律 只與導體材料性質和溫度有關,與導體橫截面積和長度無關 3 電阻串聯 併聯 串聯 r r1 r2 r3 rn併聯 兩個電阻併聯 r 4 歐...
求高中三角函式中所有的公式
sin 2 e5a48de588b662616964757a686964616f31333264636330 cos 2 1 cos 2a 1 cos2a 2 tan 2 1 sec 2 sin 2a 1 cos2a 2 cot 2 1 csc 2 積的關係 sin tan cos cos cot ...