請問離散小波變換怎麼做出時頻譜啊

2021-03-05 08:00:07 字數 1530 閱讀 4209

1樓:匿名使用者

您好,我也在思考這個問題,即離散小波變換的結果(各層係數)和頻率怎麼對應。看到你的追問,在想,你說的係數代表頻段,也就是乙個係數代表一段頻率了(連續小波變換能代表乙個點的頻率),這個確定不?如果確定,那麼你要畫圖,說dwt分解的頻帶不是等長,是說每層係數個數不同吧?

要畫在一幅圖中,是否可以將個數少的係數按照倍數增加,也就是將色塊放大呢?比如最高一層是128個係數,下一層是64個係數,那麼將64個係數每個係數後面重複一次,也變成128個係數,...,這樣最終所有層的係數個數一樣,可以畫乙個二維矩陣的顏色值,就是你需要的頻譜圖?

2樓:

cwt可以,cwt是冗餘滴可滿足取樣定理,尺度是連續滴某尺度變換結果是乙個向量陣列可對應乙個頻率值,所以可作出時頻圖。dwt和wp非冗餘不能保證一定滿足取樣定理要求,所以有時要考慮頻率混迭,吉布斯效應和平移敏感性等諸多問題,即使不考慮這些,只考慮細節資訊與cwt對應,也是帶通性質,某層細節實際對應乙個頻段,而細節結果是乙個向量陣列對應一段頻率,那麼如何做時頻譜?

小波變換到底是怎麼是怎麼個變換法? 是不是可以通過給定的時域圖,得到頻域圖? 剛接觸不太懂。

3樓:背影無忌

小波變換簡單的說就是對乙個函式用一定的小波基函式(也就是樓上說的小波函式系)在時間與空間上進行區域性化的數學變換,通過小波基的平移可以獲取原函式在該小波基下的時間資訊,然後通過縮放小波基的尺度獲得頻率資訊。主要還是計算的是小波與區域性訊號的近似係數。

離散小波變換最終獲得是在不同頻率尺度下,原始訊號在時間域的近似訊號與細節訊號。找一本小波分析的書看一下,應該不難。

4樓:汪玲杰哥

您好!小波變換首先是在時域中進行的,所以得到的是時域圖。小波變換的基本思想[4]是用一族函式去逼近或表示乙個較複雜的訊號或函式。

其中族函式通常被人們稱為小波函式系,它是由乙個基本小波函式在不同尺度上進行平移和伸縮構成的。具體做法是:把乙個被稱為是基本小波函式先作個單位的平移後,再在不同尺度下與被分析訊號x(t)做內積。

通常狹義的小波分析僅指多解析度分析,而廣義的小波分析則包含多解析度分析和小波包分解兩部分。

給定的時域圖經過小波變換後需要經過ft變換才能得到頻譜圖。

小波變換總的來說是讓你看清訊號的區域性,被稱之為「顯微鏡」。

進行離散小波變換時變換係數怎麼確定

5樓:

說實話沒有人在用這種公式做dwt的,理**式與實際計算方法是不同的,如果都用這種公式去計算那就不會有mallat演算法,雙正交小波,尺度函式和濾波器理論的研究了。

請問下,matlab裡面墨西哥帽小波可以離散化,做離散小波變換嗎?

6樓:

mexican hat小波是不具有有限沖激響應濾波器和尺度方程的小波,無論如何離散也不可能構成正交基或雙正交基,按照通常的二進位制離散化方法甚至不能構成緊框架,訊號重構誤差大,因此,一般不用於構造離散小波。因此,不能用於使用mallat演算法的dwt,只能用於cwt。

離散小波變換的近似係數和細節係數有什麼物理含義嗎

近似係數表徵了訊號小波分解重構的低頻部分資訊,細節係數則表徵了訊號的高頻部分資訊 請問小波分析中的近似係數和細節係數的橫座標 縱座標都代表什麼?你說的是細節和逼近,那麼就是dwt,如果是係數沒有重構,則橫座標是點數,縱座標就是系數值,都沒有單位,更談不上頻率。小波變換除了cwt可以做時 頻圖,牽扯頻...

請問用SPSS軟體,單因素方差分析,怎麼做出這樣的結果圖,那

這個 裡的資料 不是由spss軟體得到的,而是現實實驗得到的資料從而製作的 至於數值後面帶加減號,是指所做的實驗在當前的實驗條件下得出的結果在該數值範圍內波動。此處單因素方差分析是指在變動處理時間這一唯一因素時對結果的影響的顯著性,從而得出最優處理時間,資料是已經知道的資料 spss單因素方差分析中...

cad繪圖裡帶小斜線的標註怎麼做出來的

1 電腦 開啟baiautocad。2 打du開autocad後,點選工具欄中的格式,然後點zhi擊標註樣式。dao 3 進入標註樣式頁面回後,點選左側的答修改。4 進入修改頁面後,進入符號和箭頭頁面,在箭頭中下拉選擇傾斜。5 箭頭選擇傾斜後,標註就有小斜線了。1 開啟cad軟體,點格式 標註樣式。...