1樓:匿名使用者
上面的數字是積分上限,下面的數字是下限.如果上限是b,下限是a,那麼就表示函式在區間[a,b]進行積分.
請問微積分和高等數學是一回事嗎?
2樓:匿名使用者
不是。高等數學包括微積分。
高等數學是由微積分學
,較深入的代數學、幾何學以及它們之間的交叉內容所形成的一門基礎學科。主要內容包括:極限、微積分、空間解析幾何與線性代數、級數、常微分方程。
理工科的不同專業,文史科的不同專業,深淺程度又各不相同。研究變數的是高等數學,可高等數學並不只研究變數。
文史科各類專業的學生,學的數學稍微淺一些,課本常稱「微積分」。
在中國理工科各類專業的學生,學的數學較難,課本常稱「高等數學」。
微積分(calculus)是高等數學中研究函式的微分(differentiation)、積分(integration)以及有關概念和應用的數學分支。
它是數學的乙個基礎學科。內容主要包括極限、微分學、積分學及其應用。
微分學包括求導數的運算,是一套關於變化率的理論。它使得函式、速度、加速度和曲線的斜率等均可用一套通用的符號進行討論。
積分學,包括求積分的運算,為定義和計算面積、體積等提供一套通用的方法 。
3樓:app推廣
分析如下:
微積分和高等數學
不是一回事。準確的說,高等數學包括微積分。就實際而言,微積分要比高等數學難一點。
微積分顧名思義包括兩大體系,即微分學和積分學。在大學課程裡,微分學的主要板塊包括極限、連續、導數、微分四大塊,包括不定積分、定積分這兩大塊。其中不定積分說白了就是求原函式的。
而定積分又可分為一元函式的定積分,多元函式的定積分和廣義積分、含參量積分。
那麼什麼是高等數學呢?上面的微積分加上了空間向量、空間曲面、空間曲線這部分知識,然後再加上數項級數和函式項級數就是我們所學的高等數學了。因為積分學那裡面我們要學習曲線積分和曲面積分,因此必須要加上簡單的空間向量及空間曲線、曲面知識。
而級數這部分知識(包括數項級數和函式項級數)是研究函式性質的另一種手段,因此也加在了高等數學裡面。以上基本就是高等數學的體系了。
拓展資料
微積分(calculus)是高等數學中研究函式的微分(differentiation)、積分(integration)以及有關概念和應用的數學分支。它是數學的乙個基礎學科。內容主要包括極限、微分學、積分學及其應用。
微分學包括求導數的運算,是一套關於變化率的理論。它使得函式、速度、加速度和曲線的斜率等均可用一套通用的符號進行討論。積分學,包括求積分的運算,為定義和計算面積、體積等提供一套通用的方法。
4樓:愛青鳥
微積分和高等數學不是一回事。準確的說,高等數學包括微積分。就實際而言,微積分要比高等數學難一點。
微積分顧名思義包括兩大體系,即微分學和積分學。在大學課程裡,微分學的主要板塊包括極限、連續、導數、微分四大塊,包括不定積分、定積分這兩大塊。其中不定積分說白了就是求原函式的。
而定積分又可分為一元函式的定積分,多元函式的定積分和廣義積分、含參量積分。
那麼什麼是高等數學呢?上面的微積分加上了空間向量、空間曲面、空間曲線這部分知識,然後再加上數項級數和函式項級數就是我們所學的高等數學了。因為積分學那裡面我們要學習曲線積分和曲面積分,因此必須要加上簡單的空間向量及空間曲線、曲面知識。
而級數這部分知識(包括數項級數和函式項級數)是研究函式性質的另一種手段,因此也加在了高等數學裡面。以上基本就是高等數學的體系了。
5樓:王珂
不是一回事。高等數學包括微積分。
通常認為,高等數學是由微積分學,較深入的代數學、幾何學以及它們之間的交叉內容所形成的一門基礎學科。主要內容包括:極限、微積分、空間解析幾何與線性代數、級數、常微分方程。
在中國理工科各類專業的學生,學的數學較難,課本常稱「高等數學」;文史科各類專業的學生,學的數學稍微淺一些,課本常稱「微積分」。
理工科的不同專業,文史科的不同專業,深淺程度又各不相同。研究變數的是高等數學,可高等數學並不只研究變數。至於與「高等數學」相伴的課程通常有:
線性代數(數學專業學高等代數),概率論與數理統計。
6樓:hi漫海
數學裡面包括微積分,但只是有微積分的一
部分,高等數學裡面還有傅利葉級數,泰勒級數等其它一些內容。
積分的課程主要是學習微積分,相對而言,比高等數學要難,一般裡面還包括復變函式,積分變換等,但這兩項一般在高等數學裡面只是簡單介紹。
7樓:風炎之鷹
算了吧,回憶21是學外語的她懂什麼高等數學,微積分是高等數學的一部分,但不可否認是相當大的一部分。教材可以用六版的,習題建議用陳文燈的。
8樓:匿名使用者
通常說的高等數學包括微積分、微分方程、級數等,但是有些專業或院校用的教材除了數學物理方法外全都包括在裡面,你選同濟的教材很好,相比之下微積分好學點分數比例還高就選微積分吧
9樓:閒人乙個問
不是,微分是微分,積分是積分,兩者不同。微積分只是高等數學的一部分。
高等數學微積分,微分和積分區別是什麼?詳細的。哥有很多分。
10樓:匿名使用者
分多不要浪費!
積分一般分為不定積分、定積分和微積分三種
1.0不定積分
設f(x)是函式f(x)的乙個原函式,我們把函式f(x)的所有原函式f(x)+c(c為任意常數)叫做函式f(x)的不定積分。
記作∫f(x)dx。
其中∫叫做積分號,f(x)叫做被積函式,x叫做積分變數,f(x)dx叫做被積式,c叫做積分常數,求已知函式的不定積分的過程叫做對這個函式進行積分。
由定義可知:
求函式f(x)的不定積分,就是要求出f(x)的所有的原函式,由原函式的性質可知,只要求出函式f(x)的乙個原函式,再加上任意的常數c,就得到函式f(x)的不定積分。
也可以表述成,積分是微分的逆運算,即知道了導函式,求原函式.
2.0定積分
眾所周知,微積分的兩大部分是微分與積分。微分實際上是求一函式的導數,而積分是已知一函式的導數,求這一函式。所以,微分與積分互為逆運算。
實際上,積分還可以分為兩部分。第一種,是單純的積分,也就是已知導數求原函式,而若f(x)的導數是f(x),那麼f(x)+c(c是常數)的導數也是f(x),也就是說,把f(x)積分,不一定能得到f(x),因為f(x)+c的導數也是f(x),c是無窮無盡的常數,所以f(x)積分的結果有無數個,是不確定的,我們一律用f(x)+c代替,這就稱為不定積分。
而相對於不定積分,就是定積分。
所謂定積分,其形式為∫f(x) dx (上限a寫在∫上面,下限b寫在∫下面)。之所以稱其為定積分,是因為它積分後得出的值是確定的,是乙個數,而不是乙個函式。
定積分的正式名稱是黎曼積分,詳見黎曼積分。用自己的話來說,就是把直角座標系上的函式的圖象用平行於y軸的直線把其分割成無數個矩形,然後把某個區間[a,b]上的矩形累加起來,所得到的就是這個函式的圖象在區間[a,b]的面積。實際上,定積分的上下限就是區間的兩個端點a、b。
我們可以看到,定積分的本質是把圖象無限細分,再累加起來,而積分的本質是求乙個函式的原函式。它們看起來沒有任何的聯絡,那麼為什麼定積分寫成積分的形式呢?
定積分與積分看起來風馬牛不相及,但是由於乙個數學上重要的理論的支撐,使得它們有了本質的密切關係。把乙個圖形無限細分再累加,這似乎是不可能的事情,但是由於這個理論,可以轉化為計算積分。這個重要理論就是大名鼎鼎的牛頓-萊布尼茲公式,它的內容是:
若f'(x)=f(x)
那麼∫f(x) dx (上限a下限b)=f(a)-f(b)
牛頓-萊布尼茲公式用文字表述,就是說乙個定積分式的值,就是上限在原函式的值與下限在原函式的值的差。
正因為這個理論,揭示了積分與黎曼積分本質的聯絡,可見其在微積分學以至更高等的數學上的重要地位,因此,牛頓-萊布尼茲公式也被稱作微積分基本定理。
3.0微積分
積分是微分的逆運算,即知道了函式的導函式,反求原函式。在應用上,積分作用不僅如此,它被大量應用於求和,通俗的說是求曲邊三角形的面積,這巧妙的求解方法是積分特殊的性質決定的。
乙個函式的不定積分(亦稱原函式)指另一族函式,這一族函式的導函式恰為前一函式。
其中:[f(x) + c]' = f(x)
乙個實變函式在區間[a,b]上的定積分,是乙個實數。它等於該函式的乙個原函式在b的值減去在a的值。
積分 integral 從不同的問題抽象出來的兩個數學概念。定積分和不定積分的統稱。不定積分是為解決求導和微分的逆運算而提出的。
例如:已知定義在區間i上的函式f(x),求一條曲線y=f(x),x∈i,使得它在每一點的切線斜率為f′(x)= f(x)。函式f(x)的不定積分是f(x)的全體原函式(見原函式),記作 。
如果f(x)是f(x)的乙個原函式,則 ,其中c為任意常數。例如, 定積分是以平面圖形的面積問題引出的。y=f(x)為定義在[a,b〕上的函式,為求由x=a,x=b ,y=0和y=f(x)所圍圖形的面積s,採用古希臘人的窮竭法,先在小範圍內以直代曲,求出s的近似值,再取極限得到所求面積s,為此,先將[a,b〕分成n等分:
a=x0<x1<…<xn=b,取ζi∈[xi-1,xi〕,記δxi=xi-xi-1,,則pn為s的近似值,當n→+∞時,pn的極限應可作為面積s。把這一類問題的思想方法抽象出來,便得定積分的概念:對於定義在[a,b〕上的函式y=f(x),作分劃a=x0<x1<…<xn=b,若存在乙個與分劃及ζi∈[xi-1,xi〕的取法都無關的常數i,使得,其中則稱i為f(x)在[a,b〕上的定積分,表為即 稱[a,b〕為積分區間,f(x)為被積函式,a,b分別稱為積分的上限和下限。
當f(x)的原函式存在時,定積分的計算可轉化為求f(x)的不定積分:這是c牛頓萊布尼茲公式
微分一元微分
定義:設函式y = f(x)在x.的鄰域內有定義,x0及x0 + δx在此區間內。
如果函式的增量δy = f(x0 + δx) − f(x0)可表示為 δy = aδx + o(δx)(其中a是不依賴於δx的常數),而o(δx0)是比δx高階的無窮小,那麼稱函式f(x)在點x0是可微的,且aδx稱作函式在點x0相應於自變數增量δx的微分,記作dy,即dy = aδx。
通常把自變數x的增量 δx稱為自變數的微分,記作dx,即dx = δx。於是函式y = f(x)的微分又可記作dy = f'(x)dx。函式的微分與自變數的微分之商等於該函式的導數。
因此,導數也叫做微商。
當自變數x改變為x+△x時,相應地函式值由f(x)改變為f(x+△x),如果存在乙個與△x無關的常數a,使f(x+△x)-f(x)和a·△x之差關於△x→0是高階無窮小量,則稱a·△x是f(x)在x的微分,記為dy,並稱f(x)在x可微。函式可導必可微,反之亦然,這時a=f′(x)。再記a·△x=dy,則dy=f′(x)dx。
例如:d(sinx)=cosxdx。
幾何意義:
設δx是曲線y = f(x)上的點m的在橫座標上的增量,δy是曲線在點m對應δx在縱座標上的增量,dy是曲線在點m的切線對應δx在縱座標上的增量。當|δx|很小時,|δy-dy|比|δy|要小得多(高階無窮小),因此在點m附近,我們可以用切線段來近似代替曲線段。
多元微分
同理,當自變數為多個時,可得出多元微分得定義。
運算法則:
dy=f'(x)dx
d(u+v)=du+dv
d(u-v)=du-dv
d(uv)=du·v+dv·u
d(u/v)=(du·v-dv·u)/v^2
微積分簡單來說是什麼? 5,微積分是什麼?
要通俗易懂需要回到概念的 初心 英文calculus的本義是 演算法 翻譯成 微積分 因此,首先,微積分就是與 加減乘除 一樣的 計算方法 其次,微積分 的翻譯比英文原文更能體現其演算法本質。微積分 分為 微分 與 積分 兩部分。通俗講,前者是已知巨集觀規律求微觀趨勢,後者反之。微積分 更偉大之處在...
上邊點下邊豆號是什麼服號,上邊一個點下邊一個豆號是什麼服號
這個是分號。主要用以分隔存在一定關係 並列 轉折 承接 因果等,通常以並列關係居多 的兩句分句 分句可以屬於單重複句,也可以是多重複句的第一層分句,或者是大句中的並列部分。這個嗎,這是分號,分號是一種介於逗號和句號之間的標點符號,主要用以分隔存在一定關係 並列 轉折 承接 因果等,通常以並列關係居多...
上邊山下邊鬼是什麼字,上邊乙個山下邊乙個鬼是什麼字
拼 音w i 部 首山 五 筆mrqc 筆 順豎 豎折 豎彎 豎 撇 豎 橫折 橫 橫 撇 豎彎鉤 撇折 點 上邊兩個方下邊乙個土是什麼字?堃 k n 為 坤 的繁體 名 八卦之一,卦形為 代表地。乾坤 名 代表女性 跟 幹 相對 坤車 姓。堃本身也是簡體。同 坤 用於人名。姓。讀音 k n 釋義 ...