已知點a01b10ct0點d是直線

2021-03-04 08:49:38 字數 6885 閱讀 6507

1樓:匿名使用者

要想使d點隨意滑動bai而且ad長度始終小於du等於2倍的bd長度,由於

zhibd在垂直於ac時daobd最短,因此一定使回bd在垂直於ac時答ad長度要小於等於2倍的bd長度。

按照這個思路,直線ac的方程為 y = -1/t *x+1, 由於bd與ac垂直,因此直線 bd 的方程為 y=t*(x-1)。根據兩個直線方程可以解出交點d的座標為 ( t*(t+1)/(1+t^2) , t*(t-1)/(1+t^2) )。

然後,計算出線段 bd 的長度為:根號下 [(t-1)/(1+t^2)]^2 + [(t^2-t)/(1+t^2)]^2

線段 ad 的長度為:根號下 [(t+1)/(1+t^2)]^2 + [(t^2+t)/(1+t^2)]^2

然後,從 ad <=2bd 就可以解出 t<=1/3 或者 t>=3。

所以,t如果取正整數的話,最小是3.

如圖,拋物線y=ax2+bx+c(a≠0)與x軸交於點a(-1,0),b(3,0)兩點,與y軸交於點c(0,-3).(1)求

2樓:夜小柒

(1)設拋物線解析式為y=a(x+1)(x-3),

∵s△bcm=s梯形ocmd+s△bmd-s△boc=12

?(3+4)?1+1

2?2-4-1

2?3?3=72

+82-92

=3s△abc=1

2?ab?oc=1

2∵四邊形acpq為平行四邊形,

∴qp平行且相等ac,

∴△pfq≌△aoc,

∴fq=oc=3,

∴3=x2-2x-3,

解得 x=1+

7或x=1-7,

∴q(1+

7,3)或(1-

7,3).

綜上所述,q點為(2,-3)或(1+

已讚過

已踩過

<你對這個回答的評價是?

收起erchuhchgyj

2018-03-23

知道答主

回答量:

採納率:40%

幫助的人:2.1萬

我也去答題

訪問個人頁

關注【題目】

如圖,拋物線y=ax2+bx+c與x軸交於兩點a(−4,0)和b(1,0),與y軸交於點c(0,2),動點d沿△abc的邊ab以每秒2個單位長度的速度由起點a向終點b運動,過點d作x軸的垂線,交△abc的另一邊於點e,將△ade沿de摺疊,使點a落在點f處,設點d的運動時間為t秒。

(1)求拋物線的解析式和對稱軸;

(2)是否存在某一時刻t,使得△efc為直角三角形?若存在,求出t的值;若不存在,請說明理由;

(3)設四邊形deco的面積為s,求s關於t的函式表示式。

【解析】

(1)把a(-4,0),b(1,0),點c(0,2)即可得到結論;

(2)由題意得ad=2t,df=ad=2t,of=4-4t,由於直線ac的解析式為:y=12

x+2,得到e(2t-4,t),①當∠efc=90°,則△def∽△ofc,根據相似三角形的性質得到結論;②當∠fec=90°,根據等腰直角三角形的性質得到結論;③當∠acf=90°,根據勾股定理得到結論;

(3)求得直線bc的解析式為:y=-2x+2,當d在y軸的左側時,當d在y軸的右側時,如圖2,根據梯形的面積公式即可得到結論.

【解答】

(1)把a(-4,0),b(1,0),點c(0,2)代入y=ax2+bx+c得,

16a-4b+c=0

a+b+c=0

c=2,

∴a=-12

b=-3

2c=2

,∴拋物線的解析式為:y=-12

x2-3

2bx+2,

對稱軸為:直線x=-32

;(2)存在,

∵ad=2t,

∴df=ad=2t,

∴of=4-4t,

∴d(2t-4,0),

∵直線ac的解析式為:y=12

x+2,

∴e(2t-4,t),

∵△efc為直角三角形,

①當∠efc=90°,則△def∽△ofc,∴de

of=dfoc,即t

4-4t=2t

2,解得:t=34

,②當∠fec=90°,

∴∠aef=90°,

∴△aef是等腰直角三角形,

∴de=12

af,即t=2t,

∴t=0,(捨去),

③當∠acf=90°,

則ac2+cf2=af2,即(42+22)+[22+(4t-4)2]=(4t)2,

解得:t=54

,∴存在某一時刻t,使得△efc為直角三角形,此時,t=34

或54;

(3)∵b(1,0),c(0,2),

∴直線bc的解析式為:y=-2x+2,

當d在y軸的左側時,s=12

(de+oc)•od=12

(t+2)•(4-2t)=-t2+4 (0

已讚過

已踩過

<你對這個回答的評價是?

收起收起

1條摺疊回答

2019-05-16

如圖,拋物線y=ax2+bx+3與x軸交於a(-1,0)和b...

2015-02-04

如圖,在直角座標系中,拋物線y=ax 2 +bx+c(a≠0...

2018-08-24

如圖,已知拋物線y=ax^2+bx+c(a≠0)與x軸交於a...

2015-02-04

如圖,已知拋物線y=ax 2 + bx +3(a≠0)與x軸...

2019-10-26

如圖,拋物線y=ax2+bx+c(a≠0)與x軸交於a、b兩...

2015-02-10

已知,如圖,拋物線y=ax2+bx+c(a≠0)與x軸交於點...

2014-09-03

如圖,對稱軸為直線x=-1的拋物線y=ax^2+bx+c(a...

更多類似問題>

特別推薦

誰是 20 世紀最聰明的人?

為何說***不只是導航?

少林寺是怎麼和中國功夫繫結的?

愛因斯坦有著怎樣的童年?

換一換

幫助更多人

×個人、企業類侵權投訴

違法有害資訊,請在下方選擇後提交

類別垃圾廣告

低質灌水

色情、暴力

政治敏感

我們會通過訊息、郵箱等方式盡快將舉報結果通知您。

說明/200

提交取消

領取獎勵

我的財富值

0兌換商品

--去登入

我的現金0提現

我知道了

--去登入

做任務開寶箱

累計完成

0個任務

10任務

略略略略…

50任務

略略略略…

100任務

略略略略…

200任務

略略略略…

任務列表載入中...

新手幫助

如何答題

獲取採納

使用財富值

玩法介紹

知道**

知道團隊

合夥人認證

高質量問答

您的帳號狀態正常

投訴建議

意見反饋

非法資訊舉報

【題目】

如圖,拋物線y=ax2+bx+c與x軸交於兩點a(−4,0)和b(1,0),與y軸交於點c(0,2),動點d沿△abc的邊ab以每秒2個單位長度的速度由起點a向終點b運動,過點d作x軸的垂線,交△abc的另一邊於點e,將△ade沿de摺疊,使點a落在點f處,設點d的運動時間為t秒。

(1)求拋物線的解析式和對稱軸;

(2)是否存在某一時刻t,使得△efc為直角三角形?若存在,求出t的值;若不存在,請說明理由;

(3)設四邊形deco的面積為s,求s關於t的函式表示式。

【解析】

(1)把a(-4,0),b(1,0),點c(0,2)即可得到結論;

(2)由題意得ad=2t,df=ad=2t,of=4-4t,由於直線ac的解析式為:y=12

x+2,得到e(2t-4,t),①當∠efc=90°,則△def∽△ofc,根據相似三角形的性質得到結論;②當∠fec=90°,根據等腰直角三角形的性質得到結論;③當∠acf=90°,根據勾股定理得到結論;

(3)求得直線bc的解析式為:y=-2x+2,當d在y軸的左側時,當d在y軸的右側時,如圖2,根據梯形的面積公式即可得到結論.

【解答】

(1)把a(-4,0),b(1,0),點c(0,2)代入y=ax2+bx+c得,

16a-4b+c=0

a+b+c=0

c=2,

∴a=-12

b=-3

2c=2

,∴拋物線的解析式為:y=-12

x2-3

2bx+2,

對稱軸為:直線x=-32

;(2)存在,

∵ad=2t,

∴df=ad=2t,

∴of=4-4t,

∴d(2t-4,0),

∵直線ac的解析式為:y=12

x+2,

∴e(2t-4,t),

∵△efc為直角三角形,

①當∠efc=90°,則△def∽△ofc,∴de

of=dfoc,即t

4-4t=2t

2,解得:t=34

,②當∠fec=90°,

∴∠aef=90°,

∴△aef是等腰直角三角形,

∴de=12

af,即t=2t,

∴t=0,(捨去),

③當∠acf=90°,

則ac2+cf2=af2,即(42+22)+[22+(4t-4)2]=(4t)2,

解得:t=54

,∴存在某一時刻t,使得△efc為直角三角形,此時,t=34

或54;

(3)∵b(1,0),c(0,2),

∴直線bc的解析式為:y=-2x+2,

當d在y軸的左側時,s=12

(de+oc)•od=12

(t+2)•(4-2t)=-t2+4 (0

當d在y軸的右側時,如圖2,

∵od=4t-4,de=-8t+10,s=1

2(de+oc)•od=12

(-8t+10+2)•(4t-4)=-16t2+40t-24 (2

3樓:匿名使用者

【題目】

如圖,拋物線y=ax2+bx+c與x軸交於兩點a(−4,0)和b(1,0),與y軸交於點c(0,2),動點d沿△abc的邊ab以每秒2個單位長度的速度由起點a向終點b運動,過點d作x軸的垂線,交△abc的另一邊於點e,將△ade沿de摺疊,使點a落在點f處,設點d的運動時間為t秒。

(1)求拋物線的解析式和對稱軸;

(2)是否存在某一時刻t,使得△efc為直角三角形?若存在,求出t的值;若不存在,請說明理由;

(3)設四邊形deco的面積為s,求s關於t的函式表示式。

【解析】

(1)把a(-4,0),b(1,0),點c(0,2)即可得到結論;

(2)由題意得ad=2t,df=ad=2t,of=4-4t,由於直線ac的解析式為:y=12

x+2,得到e(2t-4,t),①當∠efc=90°,則△def∽△ofc,根據相似三角形的性質得到結論;②當∠fec=90°,根據等腰直角三角形的性質得到結論;③當∠acf=90°,根據勾股定理得到結論;

(3)求得直線bc的解析式為:y=-2x+2,當d在y軸的左側時,當d在y軸的右側時,如圖2,根據梯形的面積公式即可得到結論.

【解答】

(1)把a(-4,0),b(1,0),點c(0,2)代入y=ax2+bx+c得,

16a-4b+c=0

a+b+c=0

c=2,

∴a=-12

b=-3

2c=2

,∴拋物線的解析式為:y=-12

x2-3

2bx+2,

對稱軸為:直線x=-32

;(2)存在,

∵ad=2t,

∴df=ad=2t,

∴of=4-4t,

∴d(2t-4,0),

∵直線ac的解析式為:y=12

x+2,

∴e(2t-4,t),

∵△efc為直角三角形,

①當∠efc=90°,則△def∽△ofc,∴de

of=dfoc,即t

4-4t=2t

2,解得:t=34

,②當∠fec=90°,

∴∠aef=90°,

∴△aef是等腰直角三角形,

∴de=12

af,即t=2t,

∴t=0,(捨去),

③當∠acf=90°,

則ac2+cf2=af2,即(42+22)+[22+(4t-4)2]=(4t)2,

解得:t=54

,∴存在某一時刻t,使得△efc為直角三角形,此時,t=34

或54;

(3)∵b(1,0),c(0,2),

∴直線bc的解析式為:y=-2x+2,

當d在y軸的左側時,s=12

(de+oc)•od=12

(t+2)•(4-2t)=-t2+4 (0

當d在y軸的右側時,如圖2,

∵od=4t-4,de=-8t+10,s=1

2(de+oc)•od=12

(-8t+10+2)•(4t-4)=-16t2+40t-24 (2

已知A(1,0) B(0, 1) C( 1,2) D(2, 1) E(4,2)點,拋物線y a(x 1)

1 對稱軸為x 1,所以c 1,2 e 4,2 兩點到軸的橫向距離分別為2和3,故兩個點不是對稱點,所以不可能同時在拋物線上。2 點a若在拋物線y a x 1 2 k a 0 上,那麼它就是頂點,那麼k o,a為任意數字,這與拋物線是確定的矛盾,故點a不在拋物線y a x 1 2 k a 0 上。3...

已知三點a1,0b0,3c2,3則abc

由題目可知,三角形abc為正三角形,邊長 2中心 外接圓心 為o,橫座標為1,ao 2 3 圓心座標為 1,2 3 圓心到原點的距離為 1 4 3 7 3 21 3 ab的垂直平分線為 y 3 3 x,bc的垂直平分線為 x 1,兩垂直平分的交點即為圓心,所以圓心為 1,3 3 到原點的距離為 1 ...

已知f(x)ax b 1(0 a 1)在上有零點,求b 2a的最小值

f 0 b 1 f 1 a b 1 因0 a 1,所以f 1 f 0 a 0已知在 0,1 上有零點 則f 0 0 即b 1 0 b 1f 1 0 即a b 1 0 a b 1 結合a 1得 b 0 故0 b 1 所以b 2a 0 2 1 2 故b 2a的最小值為 2 希望能幫到你,祝學習進步o o...