1樓:留下一片林
第一章 演算法初步
1.1.1 演算法的概念
1、演算法概念:
在數學上,
2樓:匿名使用者
數學框圖 概率 統計 只要會做題就好了
概率和統計之後選修還會繼續學習的
3樓:六堡
這個在很多地方都有的吧 複習資料
高一數學必修三知識點
4樓:匿名使用者
第一章 演算法初步
1.1.1 演算法的概念
1、演算法概念:
在數學上,現代意義上的「演算法」通常是指可以用計算機來解決的某一類問題是程式或步驟,這些程式或步驟必須是明確和有效的,而且能夠在有限步之內完成.
2. 演算法的特點:
(1)有限性:乙個演算法的步驟序列是有限的,必須在有限操作之後停止,不能是無限的.
(2)確定性:演算法中的每一步應該是確定的並且能有效地執行且得到確定的結果,而不應當是模稜兩可.
(3)順序性與正確性:演算法從初始步驟開始,分為若干明確的步驟,每乙個步驟只能有乙個確定的後繼步驟,前一步是後一步的前提,只有執行完前一步才能進行下一步,並且每一步都準確無誤,才能完成問題.
(4)不唯一性:求解某乙個問題的解法不一定是唯一的,對於乙個問題可以有不同的演算法.
(5)普遍性:很多具體的問題,都可以設計合理的演算法去解決,如心算、計算器計算都要經過有限、事先設計好的步驟加以解決.
1.1.2 程式框圖
1、程式框圖基本概念:
(一)程式構圖的概念:程式框圖又稱流程圖,是一種用規定的圖形、指向線及文字說明來準確、直觀地表示演算法的圖形。
乙個程式框圖包括以下幾部分:表示相應操作的程式框;帶箭頭的流程線;程式框外必要文字說明。
(二)構成程式框的圖形符號及其作用
程式框 名稱 功能
起止框 表示乙個演算法的起始和結束,是任何流程圖不可少的。
輸入、輸出框 表示乙個演算法輸入和輸出的資訊,可用在演算法中任何需要輸入、輸出的位置。
處理框 賦值、計算,演算法中處理資料需要的算式、公式等分別寫在不同的用以處理資料的處理框內。
判斷框 判斷某一條件是否成立,成立時在出口處標明「是」或「y」;不成立時標明「否」或「n」。
學習這部分知識的時候,要掌握各個圖形的形狀、作用及使用規則,畫程式框圖的規則如下:
1、使用標準的圖形符號。2、框圖一般按從上到下、從左到右的方向畫。3、除判斷框外,大多數流程圖符號只有乙個進入點和乙個退出點。
判斷框具有超過乙個退出點的唯一符號。4、判斷框分兩大類,一類判斷框「是」與「否」兩分支的判斷,而且有且僅有兩個結果;另一類是多分支判斷,有幾種不同的結果。5、在圖形符號內描述的語言要非常簡練清楚。
(三)、演算法的三種基本邏輯結構:順序結構、條件結構、迴圈結構。
1、順序結構:順序結構是最簡單的演算法結構,語句與語句之間,框與框之間是按從上到下的順序進行的,它是由若干個依次執行的處理步驟組成的,它是任何乙個演算法都離不開的一種基本演算法結構。
順序結構在程式框圖中的體現就是用流程線將程式框自上而
下地連線起來,按順序執行演算法步驟。如在示意圖中,a框和b
框是依次執行的,只有在執行完a框指定的操作後,才能接著執
行b框所指定的操作。
2、條件結構:
條件結構是指在演算法中通過對條件的判斷
根據條件是否成立而選擇不同流向的演算法結構。
條件p是否成立而選擇執行a框或b框。無論p條件是否成立,只能執行a框或b框之一,不可能同時執行a框和b框,也不可能a框、b框都不執行。乙個判斷結構可以有多個判斷框。
3、迴圈結構:在一些演算法中,經常會出現從某處開始,按照一定條件,反覆執行某一處理步驟的情況,這就是迴圈結構,反覆執行的處理步驟為迴圈體,顯然,迴圈結構中一定包含條件結構。迴圈結構又稱重複結構,迴圈結構可細分為兩類:
(1)、一類是當型迴圈結構,如下左圖所示,它的功能是當給定的條件p成立時,執行a框,a框執行完畢後,再判斷條件p是否成立,如果仍然成立,再執行a框,如此反覆執行a框,直到某一次條件p不成立為止,此時不再執行a框,離開迴圈結構。
(2)、另一類是直到型迴圈結構,如下右圖所示,它的功能是先執行,然後判斷給定的條件p是否成立,如果p仍然不成立,則繼續執行a框,直到某一次給定的條件p成立為止,此時不再執行a框,離開迴圈結構。
當型迴圈結構 直到型迴圈結構
注意:1迴圈結構要在某個條件下終止迴圈,這就需要條件結構來判斷。因此,迴圈結構中一定包含條件結構,但不允許「死迴圈」。
2在迴圈結構中都有乙個計數變數和累加變數。計數變數用於記錄迴圈次數,累加變數用於輸出結果。計數變數和累加變數一般是同步執行的,累加一次,計數一次。
1.2.1 輸入、輸出語句和賦值語句
1、輸入語句
(1)輸入語句的一般格式
(2)輸入語句的作用是實現演算法的輸入資訊功能;(3)「提示內容」提示使用者輸入什麼樣的資訊,變數是指程式在執行時其值是可以變化的量;(4)輸入語句要求輸入的值只能是具體的常數,不能是函式、變數或表示式;(5)提示內容與變數之間用分號「;」隔開,若輸入多個變數,變數與變數之間用逗號「,」隔開。
2、輸出語句
(1)輸出語句的一般格式
(2)輸出語句的作用是實現演算法的輸出結果功能;(3)「提示內容」提示使用者輸入什麼樣的資訊,表示式是指程式要輸出的資料;(4)輸出語句可以輸出常量、變數或表示式的值以及字元。
3、賦值語句
(1)賦值語句的一般格式
(2)賦值語句的作用是將表示式所代表的值賦給變數;(3)賦值語句中的「=」稱作賦值號,與數學中的等號的意義是不同的。賦值號的左右兩邊不能對換,它將賦值號右邊的表示式的值賦給賦值號左邊的變數;(4)賦值語句左邊只能是變數名字,而不是表示式,右邊表示式可以是乙個資料、常量或算式;(5)對於乙個變數可以多次賦值。
注意:①賦值號左邊只能是變數名字,而不能是表示式。如:
2=x是錯誤的。②賦值號左右不能對換。如「a=b」「b=a」的含義執行結果是不同的。
③不能利用賦值語句進行代數式的演算。(如化簡、因式分解、解方程等)④賦值號「=」與數學中的等號意義不同。
1.2.2條件語句
1、條件語句的一般格式有兩種:(1)if—then—else語句;(2)if—then語句。2、if—then—else語句
if—then—else語句的一般格式為圖1,對應的程式框圖為圖2。
圖1 圖2
分析:在if—then—else語句中,「條件」表示判斷的條件,「語句1」表示滿足條件時執行的操作內容;「語句2」表示不滿足條件時執行的操作內容;end if表示條件語句的結束。計算機在執行時,首先對if後的條件進行判斷,如果條件符合,則執行then後面的語句1;若條件不符合,則執行else後面的語句2。
3、if—then語句
if—then語句的一般格式為圖3,對應的程式框圖為圖4。
注意:「條件」表示判斷的條件;「語句」表示滿足條件時執行的操作內容,條件不滿足時,結束程式;end if表示條件語句的結束。計算機在執行時首先對if後的條件進行判斷,如果條件符合就執行then後邊的語句,若條件不符合則直接結束該條件語句,轉而執行其它語句。
1.2.3迴圈語句
迴圈結構是由迴圈語句來實現的。對應於程式框圖中的兩種迴圈結構,一般程式語言中也有當型(while型)和直到型(until型)兩種語句結構。即while語句和until語句。
1、while語句
(1)while語句的一般格式是 對應的程式框圖是
(2)當計算機遇到while語句時,先判斷條件的真假,如果條件符合,就執行while與wend之間的迴圈體;然後再檢查上述條件,如果條件仍符合,再次執行迴圈體,這個過程反覆進行,直到某一次條件不符合為止。這時,計算機將不執行迴圈體,直接跳到wend語句後,接著執行wend之後的語句。因此,當型迴圈有時也稱為「前測試型」迴圈。
2、until語句
(1)until語句的一般格式是 對應的程式框圖是
(2)直到型迴圈又稱為「後測試型」迴圈,從until型迴圈結構分析,計算機執行該語句時,先執行一次迴圈體,然後進行條件的判斷,如果條件不滿足,繼續返回執行迴圈體,然後再進行條件的判斷,這個過程反覆進行,直到某一次條件滿足時,不再執行迴圈體,跳到loop until語句後執行其他語句,是先執行迴圈體後進行條件判斷的迴圈語句。
分析:當型迴圈與直到型迴圈的區別:(先由學生討論再歸納)
(1) 當型迴圈先判斷後執行,直到型迴圈先執行後判斷;
在while語句中,是當條件滿足時執行迴圈體,在until語句中,是當條件不滿足時執行迴圈
1.3.1輾轉相除法與更相減損術
1、輾轉相除法。也叫歐幾里德演算法,用輾轉相除法求最大公約數的步驟如下:
(1):用較大的數m除以較小的數n得到乙個商 和乙個餘數 ;(2):若 =0,則n為m,n的最大公約數;若 ≠0,則用除數n除以餘數 得到乙個商 和乙個餘數 ;(3):
若 =0,則 為m,n的最大公約數;若 ≠0,則用除數 除以餘數 得到乙個商 和乙個餘數 ;…… 依次計算直至 =0,此時所得到的 即為所求的最大公約數。
2、更相減損術
我國早期也有求最大公約數問題的演算法,就是更相減損術。在《九章算術》中有更相減損術求最大公約數的步驟:可半者半之,不可半者,副置分母
高中數學必修三知識點總結是什麼?
5樓:楊美麗
第一章 演算法
bai初步
1、演算法
2、程式du框圖
3、算數zhi的三種基本邏輯結構
dao:(1)順序結構
(2)條件內結構(3)循容環結構
4、基本演算法語句:(1)輸入、輸出語句(2)賦值語句(3)條件語句(4)迴圈語句
5、演算法案例:(1)輾轉相除法與更相減損術(2)秦九韶演算法(3)進製
第二章 統計
1、收集資料(抽樣方法):(1)簡單隨機抽樣(2)系統抽樣(3)分層抽樣
2、整理、分析、資料、估計、推斷:(1)用樣本估計總體:①用樣本頻率估計總體分布②用樣本資料特徵估計總體資料特徵(2)變數間的相關關係:線性回歸分析
第三章 概率
隨機事件 —— 概率 —— 概率的意義與性質:1、古典概型2、幾何概型 2、應用概率解決實際問題 —— 隨機數與隨機模型——
高一數學必修五,必修二複習重點,高一數學必修二,必修五總結
五 三角恒等變換 半形.2倍角,積化和差等公式向量的數量積 多做一下這些題目 二 1 空間點 直線 平面之間的位置關係 2 直線 平面平行的判定及其性質 3 直線 平面垂直的判定及其性質 你弄一張紙把這些整一下.再去做相關的題目 4 以下的公式要記 直線的方程 直線的交點座標與距離公式 圓與方程 也...
高一數學必修一函式的單調性,高一數學必修一的判斷函式單調性的解法
1.設f x ax 2 bxc,a 0 f 0 c 0 c 0f x 1 f x a x 1 2 b x1 ax 2 bx a 2x1 b 2ax ab 2xa 1 b 1 f x x 2 x 2.f x x 2 x的影象是頂點為 1 2,1 4 開口向上的拋物線,所以只要y 2x m在 1 2,1...
高一數學必修四三角函式的,高一數學必修4三角函式
sinb sina b是銳角 高一數學必修4三角函式 三角函式影象平移變換由y sin x的圖象變換出y sin x 的圖象一般有兩個途徑,只有區別開這兩個 途徑,才能靈活進行圖象變換。利用圖象的變換作圖象時,提倡先平移後伸縮,但先伸縮後平移也經常出現無論哪種 變形,請切記每乙個變換總是對字母 x而...