請問對以下正態分佈描述怎樣理解,請問對以下正態分佈描述怎樣理解?統計學問題

2021-03-04 05:54:12 字數 5269 閱讀 7777

1樓:

對於非專業的學生來說,我想只需要知道簡單的幾點就夠了。死磕定義和公式會把你弄暈的,很多時候你只要知道正態的一些特點就可以了……

首先正態分佈嚴格關於均值對稱,均值的那條線就像一面鏡子一樣。

其次正態分佈是鐘型的,它的密度函式就像乙個鐘倒扣在x軸上。

再次,任何正態都可以通過乙個相當簡便的變換(x-miu)/sigma,得到標準正態,這為我們研究任何正態的性質打下了基礎

正態的應用十分廣泛,根據我自己的感想有兩個原因;

一是正態具有普遍意義。當我們不知道某個事物可能的分布時,如果它的樣本的直方圖看上去像正態的形狀,我們常常就假設它可能有正態的分布,而事實上,很多的直方圖畫出來就是中間高兩邊低,我們的假設還是很有意義的

二是理論意義,雖然正態分佈的函式看上去很複雜,但由於一些微積分公式,統計學定理,和正態表的應用,使得正態變成我們最容易計算的分布之一。

請問對以下正態分佈描述怎樣理解?統計學問題

2樓:林藝穎

一般說1.96,它意思其實1.96和2的差別只是精確到小數點位數不同。

正態分佈的含義是什麼?

3樓:儒雅的小心心呀

正態分佈是一種概率分布。

正態分佈是具有兩個引數μ和σ2的連續型隨機變數的分布,第一引數μ是服從正態分佈的隨機變數的均值,第二個引數σ2是此隨機變數的方差,所以正態分佈記作n(μ,σ2 )。

服從正態分佈的隨機變數的概率規律為取與μ鄰近的值的概率大 ,而取離μ越遠的值的概率越小;σ越小,分布越集中在μ附近,σ越大,分布越分散。正態分佈的密度函式的特點是:關於μ對稱,在μ處達到最大值,在正(負)無窮遠處取值為0,在μ±σ處有拐點。

它的形狀是中間高兩邊低 ,影象是一條位於x軸上方的鐘形曲線。當μ=0,σ2 =1時,稱為標準正態分佈,記為n(0,1)。

μ維隨機向量具有類似的概率規律時,稱此隨機向量遵從多維正態分佈。多元正態分佈有很好的性質,例如,多元正態分佈的邊緣分布仍為正態分佈,它經任何線性變換得到的隨機向量仍為多維正態分佈,特別它的線性組合為一元正態分佈。

正態分佈最早由a.棣莫弗在求二項分布的漸近公式中得到。c.f.高斯在研究測量誤差時從另乙個角度匯出了它。p.s.拉普拉斯和高斯研究了它的性質。

生產與科學實驗中很多隨機變數的概率分布都可以近似地用正態分佈來描述。例如,在生產條件不變的情況下,產品的強力、抗壓強度、口徑、長度等指標;同一種生物體的身長、體重等指標;同一種種子的重量;測量同一物體的誤差;彈著點沿某一方向的偏差;某個地區的年降水量;以及理想氣體分子的速度分量,等等。一般來說,如果乙個量是由許多微小的獨立隨機因素影響的結果,那麼就可以認為這個量具有正態分佈(見中心極限定理)。

從理論上看,正態分佈具有很多良好的性質 ,許多概率分布可以用它來近似;還有一些常用的概率分布是由它直接匯出的,例如對數正態分佈、t分布、f分布等。

「正態分佈」的意義是什麼?

4樓:浮生梔

「正態分佈」的意義許多統計方法的理論基礎。

檢驗、方差分析、相關和回歸分析等多種統計方法均要求分析的指標服從正態分佈。許多統計方法雖然不要求分析指標服從正態分佈,但相應的統計量在大樣本時近似正態分佈,因而大樣本時這些統計推斷方法也是以正態分佈為理論基礎的

在數學、物理及工程等領域都非常重要的概率分布,在統計學的許多方面有著重大的影響力,若隨機變數服從乙個位置引數、尺度引數為的概率分布。

正態分佈是一種概率分布。正態分佈是具有兩個引數μ和σ^2的連續型隨機變數的分布,第一引數μ是遵從正態分佈的隨機變數的均值,第二個引數σ^2是此隨機變數的方差,所以正態分佈記作n(μ,σ^2 )。

遵從正態分佈的隨機變數的概率規律為取 μ鄰近的值的概率大 ,而取離μ越遠的值的概率越小;σ越小,分布越集中在μ附近,σ越大,分布越分散。

擴充套件資料

標準正態分佈特點:密度函式關於平均值對稱

平均值與它的眾數(statistical mode)以及中位數(median)同一數值。

函式曲線下68.268949%的面積在平均數左右的乙個標準差範圍內。

95.449974%的面積在平均數左右兩個標準差的範圍內。

99.730020%的面積在平均數左右三個標準差的範圍內。

99.993666%的面積在平均數左右四個標準差的範圍內。

函式曲線的反曲點(inflection point)為離平均數乙個標準差距離的位置。

5樓:杉杉渤文

是乙個在數學、物理及工程等領域都非常重要的概率分布,在統計學的許多方面有著重大的影響力。若隨機變數服從乙個位置引數、尺度引數為的概率分布。

正態分佈(normal distribution)是一種概率分布

正態分佈是具有兩個引數μ和σ^2的連續型隨機變數的分布,第一引數μ是遵從正態分佈的隨機變數的均值,第二個引數σ^2是此隨機變數的方差,所以正態分佈記作n(μ,σ^2 )。遵從正態分佈的隨機變數的概率規律為取 μ鄰近的值的概率大 ,而取離μ越遠的值的概率越小;σ越小,分布越集中在μ附近,σ越大,分布越分散。

主要特點

⒈ 估計頻數分布 乙個服從正態分佈的變數只要知道其均數與標準差就可根據公式即可估計任意取值範圍內頻數比例。

⒉ 制定參考值範圍

⒊ 質量控制:為了控制實驗中的測量(或實驗)誤差,常以 作為上、下警戒值,以 作為上、下控制值。這樣做的依據是:正常情況下測量(或實驗)誤差服從正態分佈。

⒋ 正態分佈是許多統計方法的理論基礎。檢驗、方差分析、相關和回歸分析等多種統計方法均要求分析的指標服從正態分佈。許多統計方法雖然不要求分析指標服從正態分佈,但相應的統計量在大樣本時近似正態分佈,因而大樣本時這些統計推斷方法也是以正態分佈為理論基礎的。

如果一組資料滿足正態分佈,請問意義是什麼,資料有什麼特點

6樓:醉意撩人殤

正態分佈的意義和特點:

1、正態分佈有兩個引數,即均數μ和標準差σ,可記作n(μ,σ):均數μ決定正態曲線的中心位置;標準差σ決定正態曲線的陡峭或扁平程度。σ越小,曲線越陡峭;σ越大,曲線越扁平。

2、對稱性:正態曲線以均數為中心,左右對稱,曲線兩端永遠不與橫軸相交。

3、均勻變動性:正態曲線由均數所在處開始,分別向左右兩側逐漸均勻下降。

4、集中性:正態曲線的高峰位於正**,即均數所在的位置。

5、u變換:為了便於描述和應用,常將正態變數作資料轉換。

7樓:我是乙個麻瓜啊

1、集中性:正態曲線的高峰位於正**,即均數所在的位置。

2、對稱性:正態曲線以均數為中心,左右對稱,曲線兩端永遠不與橫軸相交。

3、均勻變動性:正態曲線由均數所在處開始,分別向左右兩側逐漸均勻下降。

4、正態分佈有兩個引數,即均數μ和標準差σ,可記作n(μ,σ):均數μ決定正態曲線的中心位置;標準差σ決定正態曲線的陡峭或扁平程度。σ越小,曲線越陡峭;σ越大,曲線越扁平。

5、u變換:為了便於描述和應用,常將正態變數作資料轉換。

擴充套件資料

正態分佈的應用

1、估計頻數分布 乙個服從正態分佈的變數只要知道其均數與標準差就可根據公式即可估計任意取值範圍內頻數比例。

2、制定參考值範圍

(1)正態分佈法 適用於服從正態(或近似正態)分布指標以及可以通過轉換後服從正態分佈的指標。

(2)百分位數法 常用於偏態分布的指標。表3-1中兩種方法的單雙側界值都應熟練掌握。

3、質量控制:為了控制實驗中的測量(或實驗)誤差,常以 作為上、下警戒值,以 作為上、下控制值。這樣做的依據是:正常情況下測量(或實驗)誤差服從正態分佈。

4、正態分佈是許多統計方法的理論基礎。檢驗、方差分析、相關和回歸分析等多種統計方法均要求分析的指標服從正態分佈。許多統計方法雖然不要求分析指標服從正態分佈,但相應的統計量在大樣本時近似正態分佈,因而大樣本時這些統計推斷方法也是以正態分佈為理論基礎的。

綜合素質研究

教育統計學統計規律表明,學生的智力水平,包括學習能力,實際動手能力等呈正態分佈。因而正常的考試成績分布應基本服從正態分佈。考試分析要求繪製出學生成績分布的直方圖,以「中間高、兩頭低」來衡量成績符合正態分佈的程度。

其評價標準認為:考生成績分布情況直方圖,基本呈正態曲線狀,屬於好,如果略呈正(負)態狀,屬於中等,如果呈嚴重偏態或無規律,就是差的。

從概率統計規律看,「正常的考試成績分布應基本服從正態分佈」是正確的。但是必須考慮人與物的本質不同,以及教育的有所作為可以使「隨機」受到干預,用曲線或直方圖的形狀來評價考試成績就有失偏頗。

許多教育專家(如上海顧泠沅、美國布魯姆等)已經通過實踐論證,教育是可以大有作為的,可以做到大多數學生及格,而且多數學生可以得高分,考試成績曲線是偏正態分佈的。但是長期受到「中間高、兩頭低」標準的影響,限制了教師的作為,抑制了多數學生能夠學好的信心。這是很大的誤會。

通常正態曲線有一條對稱軸。當某個分數(或分數段)的考生人數最多時,對應曲線的最高點,是曲線的頂點。該分數值在橫軸上的對應點與頂點連線的線段就是該正態曲線的對稱軸。

考生人數最多的值是峰值。我們注意到,成績曲線或直方圖實際上很少對稱的,稱之為峰線更合適。

8樓:匿名使用者

正太分布的特點及意義:

1、正態分佈有兩個引數,即均數μ和標準差σ,可記作n(μ,σ):均數μ決定正態曲線的中心位置;標準差σ決定正態曲線的陡峭或扁平程度。σ越小,曲線越陡峭;σ越大,曲線越扁平。

2、對稱性:正態曲線以均數為中心,左右對稱,曲線兩端永遠不與橫軸相交。

3、均勻變動性:正態曲線由均數所在處開始,分別向左右兩側逐漸均勻下降。

4、集中性:正態曲線的高峰位於正**,即均數所在的位置。

5、u變換:為了便於描述和應用,常將正態變數作資料轉換。

正態分佈的曲線特徵:

1、集中性:正態曲線的高峰位於正**,即均數所在的位置。

2、對稱性:正態曲線以均數為中心,左右對稱,曲線兩端永遠不與橫軸相交。

3、均勻變動性:正態曲線由均數所在處開始,分別向左右兩側逐漸均勻下降

9樓:匿名使用者

首先你要了解你要這些資料是幹什麼用的啊,

有了這樣的一組符合正態分佈的資料,可以得到中心的乙個區間,得到的結果是否是你所需要的啊。

比如說你要對班級成績的資料進行抽樣調查,得到的就是班級成績的乙個整體分布,重心在乙個大的區間還是乙個小的區間都是可以從一定的程度上反應出班級的整體的收教育的程度的。如果得到的是這個班級的成績主要都是在70到80分之間(100的滿分),和主要成績在60到90之間是不是可以反應出乙個不同的結論呢?

文溯閣(請問以下這句話對嗎

北京文淵閣 瀋陽文朔閣 承德文津閣 杭州文瀾閣 北京文淵閣 文淵閣位於故宮東華門內文華殿後,原明代聖濟殿舊址。清朝乾隆三十九年至四十一年 公元1774 1776年 建成,是皇家收藏 四庫全書 的圖書館。世界上最大的叢書 四庫全書 曾藏在這裡,以非常考究的楠木書箱盛裝,安置在書架上。另外,故宮文淵閣還...

以下哪一項對建築環境的描述是錯誤的

單選題 每題2,共20題 1 哪項關於技術習程組織產影響描述錯 c a 組織性轉化程 b 挑戰決策機制 c 擴充套件戰略行範疇 d 改進管理能力 2 創新需要技術市場協同發展哪項能答問題c a 度市場導向使技術員創新程於關注工程化能力工藝水平改進產品平台豐富化使新產品發轉變短期行 b 關注價值增加忽...

C語言補充函式,以下對C語言函式的有關描述中,不正確的描述是哪個?(選擇是問題補充裡)

這些東西你還是自己在網上找一些類似的看看,然後自己寫,對你有很大好處 以下對c語言函式的有關描述中,不正確的描述是哪個?選擇是問題補充裡 這個是多選題 答案abc 函式可以巢狀呼叫但不可以潛逃定義 函式可以沒有返回值 void 可以放在多個檔案中 在c中,呼叫函式時,只能把實參的值傳送給形參,形參的...