能否用引數方程解此題。怎麼解?引數方程題目求解。

2023-03-17 19:35:02 字數 1404 閱讀 5757

1樓:匿名使用者

設ab的中點為r,座標為(x,y),則在rt△abp中,|ar|=|pr|

∵r是弦ab的中點。

∴在rt△oar中,依勾股定理得。

|ar|∧2=|ao|∧2-|or|∧2=36-(x∧2+y∧2)又∵|ar|=|pr|=√x-4)∧2+y∧2∴(x-4)∧2+y∧2=36-(x∧2+y∧2)即x∧2+y∧2-4x-10=0

因此點r在乙個圓上,而當r在此圓上運動時,q點即在所求的軌跡上運動。設q(x,y),r(x1,y1)

∵r是pq的中點。

∴x1=x+4/2,y1=y+6/2

代入方程x∧2+y∧2-4x-10=0,得。

(x+4/2)∧2+(y/2)∧2-4*x+4/2-10=0整理得。

x∧2+y∧2=56即為矩形apbq的頂點q的軌跡方程。

引數方程題目求解。

2樓:我不是他舅

y-1=k(x-2)

y=kx+(1-2k)

代入x²-y²=1

x²-[k²x²+2k(1-2k)x+(1-2k)²]1(1-k²)x²-2k(1-2k)x-(1-2k)²-1=0x1+x2=2k(1-2k)/(1-k²)中點橫座標是(x1+x2)/2=k(1-2k)/(1-k²)所以k(1-2k)/(1-k²)=2

k-2k²=2-2k²

k=2所以是2x-y-3=0

引數方程的題

3樓:吉祿學閣

圓的方程為。

ρ=2cos(θ+60度),利用公式cos(α+cosαcosβ-sinαsinβ

得到:ρ=2cosθcos60°-2sinθsin60°即:ρ=cosθ-√3sinθ,兩邊同時乘以ρ得到:

x^2+y^2=x-√3y.

4樓:回憶—鞦韆

恩 題確實有點問題呀。

5樓:匿名使用者

好懷念高中的時候啊。。。

圓方程抄錯可以反推一下,根據答案和直線方程算出符合直線上到(-1,2)距離和為6+√3的點的集合,然後分別固定圓的半徑或者是圓心算一下,看看得出的圓方程哪個和你印象中的那個比較像。

求數學大神,這題用引數方程怎麼解

6樓:西域牛仔王

直線引數方程為 {x=2+3t/5,y=4t/5,代入拋物線方程得 (4t/5)²=2(2+3t/5),整理得 8t²-15t-50=0,所以 t1+t2=15/8,t1t2=-50/8,因此 x1+x2=4+9/8=41/8,y1+y2=4(t1+t2)/5=6,所以中點座標為(41/16,3),|ab|=|t2-t1|=√t1+t2)²-4t1t2]=√15/8)²+25]=5√73/8。

列方程解乙個應用題,列方程,解應用題

分析 首先根據共支付給景區旅遊費用27 000元,確定旅遊的人數的範圍,然後根據每人的旅遊費用 人數 總費用,設該單位這次共有x人去景區旅遊 即可由對話方塊,超過25人的人數為 x 25 人,每人降低20元,共降低了20 x 25 元 實際每人收了 1000 20 x 25 元,列出方程求解 解答 ...

列方程,解應用題

1設鉛筆價錢為x元,練習本x 0.1 5x 8 x 0.1 7.3 5x 8x 0.8 7.3 13x 7.3 0.8 13x 6.5 x 0.5 x 0.1 0.6 2設乙袋大公尺x,甲袋大公尺1.2x 1.2x x 5 20.2x 10 乙袋 x 50 甲袋 1.2x 60 1.設鉛筆價錢為x元...

應用題請用方程解

解 設李大爺再取出x圓錢,取出的錢就是剩下的5分之3,7200 1 4 x 7200 7200 1 4 x 3 5 解得 x 900 答 李大爺再取出900圓錢,取出的錢就是剩下的5分之3.剩下的錢佔總數的 1 1 3 5 5 8 取出的錢佔總數的 1 5 8 3 8 再取出多少錢 7200 3 8...