1樓:微豆網路
向量的加法滿足平行四邊形法則和三角形法則。
ab+bc=ac。
a+b=(x+x',y+y')。
a+0=0+a=a。
向量加法的運算律:
交換律:a+b=b+a;
結合律:(a+b)+c=a+(b+c)。
2、向量的減法
如果a、b是互為相反的向量,那麼a=-b,b=-a,a+b=0. 0的反向量為0
ab-ac=cb. 即「共同起點,指向被減」
a=(x,y) b=(x',y') 則 a-b=(x-x',y-y').
4、數乘向量
實數λ和向量a的乘積是乙個向量,記作λa,且∣λa∣=∣λ∣∣a∣。
當λ>0時,λa與a同方向;
當λ<0時,λa與a反方向;
當λ=0時,λa=0,方向任意。
當a=0時,對於任意實數λ,都有λa=0。
注:按定義知,如果λa=0,那麼λ=0或a=0。
實數λ叫做向量a的係數,乘數向量λa的幾何意義就是將表示向量a的有向線段伸長或壓縮。
當∣λ∣>1時,表示向量a的有向線段在原方向(λ>0)或反方向(λ<0)上伸長為原來的∣λ∣倍;
當∣λ∣<1時,表示向量a的有向線段在原方向(λ>0)或反方向(λ<0)上縮短為原來的∣λ∣倍。
數與向量的乘法滿足下面的運算律
結合律:(λa)b=λ(ab)=(aλb)。
向量對於數的分配律(第一分配律):(λ+μ)a=λa+μa.
數對於向量的分配律(第二分配律):λ(a+b)=λa+λb.
數乘向量的消去律:① 如果實數λ≠0且λa=λb,那麼a=b。② 如果a≠0且λa=μa,那麼λ=μ。
3、向量的的數量積
定義:已知兩個非零向量a,b。作oa=a,ob=b,則角aob稱作向量a和向量b的夾角,記作〈a,b〉並規定0≤〈a,b〉≤π
定義:兩個向量的數量積(內積、點積)是乙個數量,記作ab。若a、b不共線,則ab=|a||b|cos〈a,b〉;若a、b共線,則ab=+-∣a∣∣b∣。
向量的數量積的座標表示:ab=xx'+yy'。
向量的數量積的運算律
ab=ba(交換律);
(λa)b=λ(ab)(關於數乘法的結合律);
(a+b)c=ac+bc(分配律);
向量的數量積的性質
aa=|a|的平方。
a⊥b 〈=〉ab=0。
|ab|≤|a||b|。
向量的數量積與實數運算的主要不同點
1、向量的數量積不滿足結合律,即:(ab)c≠a(bc);例如:(ab)^2≠a^2b^2。
2、向量的數量積不滿足消去律,即:由 ab=ac (a≠0),推不出 b=c。
2樓:方騰飛老師
回答您好,向量的加減乘除和普通數字計算的差別就是它有涉及到了乙個方向的問題,下面就是向量的計算方法。
1、向量的加法:滿足平行四邊形法則和三角形法則。
2、向量的減法:如果a、b是互為相反的向量,那麼a=-b,b=-a,a+b=0. 0的反向量為0oa-ob=ba.
即「共同起點,指向被減」,例如:a=(x1,y1),b=(x2,y2) ,則a-b=(x1-x2,y1-y2)。
3、向量的乘法:實數λ和向量a的叉乘乘積是乙個向量,記作λa,且|λa|=|λ|*|a|。當λ>0時,λa的方向與a的方向相同;當λ<0時,λa的方向與a的方向相反;當λ=0時,λa=0,方向任意。
當a=0時,對於任意實數λ,都有λa=0。
4、向量的除法:a÷k=|a|/k*a的單位向量。即結果為原向量的長度縮小k倍後的向量,方向不變。
希望我的回答可以幫到您殺
更多4條
向量的加減乘除運算法則是什麼
3樓:紅醉卉單精
設a=(x,y),b=(x',y')。
加法向量的加法滿足平行四邊形法則和三角形法則。
向量的加法
ob+oa=oc。
a+b=(x+x',y+y')。
a+0=0+a=a。
向量加法的運算律:
交換律:a+b=b+a;
結合律:(a+b)+c=a+(b+c)。減法如果a、b是互為相反的向量,那麼a=-b,b=-a,a+b=0.
0的反向量為0ab-ac=cb.即「共同起點,指向被
向量的減法
減」a=(x,y)b=(x',y')
則a-b=(x-x',y-y').如圖:c=a-b
以b的結束為起點,a的結束為終點。數乘實數λ和向量a的乘積是乙個向量,記作λa,且∣λa∣=∣λ∣·∣a∣。當λ>0時,λa與a同方向當λ<0時,λa與a反方向;
向量的數乘
當λ=0時,λa=0,方向任意。當a=0時,對於任意實數λ,都有λa=0。注:
按定義知,如果λa=0,那麼λ=0或a=0。實數λ叫做向量a的係數,乘數向量λa的幾何意義就是將表示向量a的有向線段伸長或壓縮。當λ>1時,表示向量a的有向線段在原方向(λ>0)或反方向(λ<0)上伸長為原來的∣λ∣倍當λ<1時,表示向量a的有向線段在原方向(λ>0)或××反方向(λ<0)上縮短為原來的∣λ∣倍。
數與向量的乘法滿足下面的運算律結合律:(λa)·b=λ(a·b)=(a·λb)。向量對於數的分配律(第一分配律):
(λ+μ)a=λa+μa.數對於向量的分配律(第二分配律):λ(a+b)=λa+λb.
數乘向量的消去律:①
如果實數λ≠0且λa=λb,那麼a=b。②
如果a≠0且λa=μa,那麼λ=μ。[2]需要注意的是:向量的加減乘除運算滿足實數加減乘除運算法則。
數量積定義:已知兩個非零向量a,b。作oa=a,ob=b,則角aob稱作向量a和向量b的夾角,記作〈a,b〉並規定0≤〈a,b〉≤π定義:
兩個向量的數量積(內積、點積)是乙個數量(沒有方向),記作a·b。若a、b不共線,則a·b=|a|·|b|·cos〈a,b〉(依定義有:cos〈a,b〉=a·b
/|a|·|b|);若a、b共線,則a·b=±∣a∣∣b∣。向量的數量積的座標表示:a·b=x·x'+y·y'。
向量的數量積的運算律a·b=b·a(交換律)(λa)·b=λ(a·b)(關於數乘法的結合律)(a+b)·c=a·c+b·c(分配律)向量的數量積的性質a·a=|a|的平方。a⊥b〈=〉a·b=0。|a·b|≤|a|·|b|。
(該公式證明如下:|a·b|=|a|·|b|·|cosα|
因為0≤|cosα|≤1,所以|a·b|≤|a|·|b|)向量的數量積與實數運算的主要不同點1.向量的數量積不滿足結合律,即:(a·b)·c≠a·(b·c);例如:(a·b)^2≠a^2·b^2。
2.向量的數量積不滿足消去律,即:由a·b=a·c(a≠0),推不出b=c。3.|a·b|與|a|·|b|不等價4.由
|a|=|b|
,不能推出a=b,也不能推出a=-b,但反過來則成立。向量積定義:兩個向量a和b的向量積
向量的幾何表示
(外積、叉積)是乙個向量,記作a×b(這裡「×」並不是乘號,只是一種表示方法,與「·」不同,也可記做「∧」)。若a、b不共線,則a×b的模是:∣a×b∣=|a|·|b|·sin〈a,b〉;a×b的方向是:
垂直於a和b,且a、b和a×b按這個次序構成右手系。若a、b平行,則a×b=0,a、b垂直,則a×b=|a|*|b|(此處與數量積不同,請注意)。向量積即兩個不共線非零向量所在平面的一組法向量。
運算法則:運用三階行列式設a,b,c分別為沿x,y,z軸的單位向量a=(x1,y1,z1)b=(x1,y1,z1)則a*b=a
bcx1
y1z1x1
y1z1向量的向量積性質:∣a×b∣是以a和b為邊的平行四邊形面積。a×a=0。
a平行b〈=〉a×b=0向量的向量積運算律a×b=-b×a(λa)×b=λ(a×b)=a×(λb)a×(b+c)=a×b+a×c.(a+b)×c=a×c+b×c.上兩個分配律分別稱為左分配律和右分配律。
在演算中應注意不能交換「×」號兩側向量的次序。如:a×(2b)=b×(2a)和c×(a+b)=a×c+b×c都是錯誤的!
注:向量沒有除法,「向量ab/向量cd」是沒有意義的。
向量的加減乘除運算公式?
4樓:霍興有藺卿
向量加法a+b=(x+o,y+p,z+q)向量減法a-b=(x-o,y-p,z-q)向量乘法(高中就是數量積或點積)a*b=(xo,yp,zq)向量沒有除法
向量的乘除法怎麼運算?
5樓:新光明張老師
你好!中學階段只需要學會向量的乘法原理,
a向量*b向量=a的模*b的模*cos(a,b向量的夾角)或者在座標中,對應座標相乘再求和,
如a(2,3),b(2,4),
那麼a*b=2*2+3*4=16,
向量的出發在中學階段你們不需要學習,
最多知道平行向量間的倍數關係,如a向量=5倍b向量,這種。
高中數學平面向量的演算法(加減乘除)
6樓:匿名使用者
定比分點公式(向量p1p=λ•向量pp2)
設p1、p2是直線上的兩點,p是l上不同於p1、p2的任意一點。則存在乙個實數 λ,使 向量p1p=λ•向量pp2,λ叫做點p分有向線段p1p2所成的比。
若p1(x1,y1),p2(x2,y2),p(x,y),則有
op=(op1+λop2)(1+λ);(定比分點向量公式)
x=(x1+λx2)/(1+λ),
y=(y1+λy2)/(1+λ)。(定比分點座標公式)
我們把上面的式子叫做有向線段p1p2的定比分點公式
三點共線定理
若oc=λoa +μob ,且λ+μ=1 ,則a、b、c三點共線
三角形重心判斷式
在△abc中,若ga +gb +gc=o,則g為△abc的重心
[編輯本段]向量共線的重要條件
若b≠0,則a//b的重要條件是存在唯一實數λ,使a=λb。
a//b的重要條件是 xy'-x'y=0。
零向量0平行於任何向量。
[編輯本段]向量垂直的充要條件
a⊥b的充要條件是 a•b=0。
a⊥b的充要條件是 xx'+yy'=0。
零向量0垂直於任何向量.
設a=(x,y),b=(x',y')。
1、向量的加法
向量的加法滿足平行四邊形法則和三角形法則。
ab+bc=ac。
a+b=(x+x',y+y')。
a+0=0+a=a。
向量加法的運算律:
交換律:a+b=b+a;
結合律:(a+b)+c=a+(b+c)。
2、向量的減法
如果a、b是互為相反的向量,那麼a=-b,b=-a,a+b=0. 0的反向量為0
ab-ac=cb. 即「共同起點,指向被減」
a=(x,y) b=(x',y') 則 a-b=(x-x',y-y').
4、數乘向量
實數λ和向量a的乘積是乙個向量,記作λa,且∣λa∣=∣λ∣•∣a∣。
當λ>0時,λa與a同方向;
當λ<0時,λa與a反方向;
當λ=0時,λa=0,方向任意。
當a=0時,對於任意實數λ,都有λa=0。
注:按定義知,如果λa=0,那麼λ=0或a=0。
實數λ叫做向量a的係數,乘數向量λa的幾何意義就是將表示向量a的有向線段伸長或壓縮。
當∣λ∣>1時,表示向量a的有向線段在原方向(λ>0)或反方向(λ<0)上伸長為原來的∣λ∣倍;
當∣λ∣<1時,表示向量a的有向線段在原方向(λ>0)或反方向(λ<0)上縮短為原來的∣λ∣倍。
數與向量的乘法滿足下面的運算律
結合律:(λa)•b=λ(a•b)=(a•λb)。
向量對於數的分配律(第一分配律):(λ+μ)a=λa+μa.
數對於向量的分配律(第二分配律):λ(a+b)=λa+λb.
數乘向量的消去律:① 如果實數λ≠0且λa=λb,那麼a=b。② 如果a≠0且λa=μa,那麼λ=μ。
3、向量的的數量積
定義:已知兩個非零向量a,b。作oa=a,ob=b,則角aob稱作向量a和向量b的夾角,記作〈a,b〉並規定0≤〈a,b〉≤π
定義:兩個向量的數量積(內積、點積)是乙個數量,記作a•b。若a、b不共線,則a•b=|a|•|b|•cos〈a,b〉;若a、b共線,則a•b=+-∣a∣∣b∣。
向量的數量積的座標表示:a•b=x•x'+y•y'。
向量的數量積的運算律
a•b=b•a(交換律);
(λa)•b=λ(a•b)(關於數乘法的結合律);
(a+b)•c=a•c+b•c(分配律);
向量的數量積的性質
a•a=|a|的平方。
a⊥b 〈=〉a•b=0。
|a•b|≤|a|•|b|。
向量的數量積與實數運算的主要不同點
1、向量的數量積不滿足結合律,即:(a•b)•c≠a•(b•c);例如:(a•b)^2≠a^2•b^2。
2、向量的數量積不滿足消去律,即:由 a•b=a•c (a≠0),推不出 b=c。
3、|a•b|≠|a|•|b|
4、由 |a|=|b| ,推不出 a=b或a=-b。
4、向量的向量積
定義:兩個向量a和b的向量積(外積、叉積)是乙個向量,記作a×b。若a、b不共線,則a×b的模是:
∣a×b∣=|a|•|b|•sin〈a,b〉;a×b的方向是:垂直於a和b,且a、b和a×b按這個次序構成右手系。若a、b共線,則a×b=0。
向量的向量積性質:
∣a×b∣是以a和b為邊的平行四邊形面積。
a×a=0。
a‖b〈=〉a×b=0。
向量的向量積運算律
a×b=-b×a;
(λa)×b=λ(a×b)=a×(λb);
(a+b)×c=a×c+b×c.
注:向量沒有除法,「向量ab/向量cd」是沒有意義的。
向量的三角形不等式
1、∣∣a∣-∣b∣∣≤∣a+b∣≤∣a∣+∣b∣;
① 當且僅當a、b反向時,左邊取等號;
② 當且僅當a、b同向時,右邊取等號。
2、∣∣a∣-∣b∣∣≤∣a-b∣≤∣a∣+∣b∣。
① 當且僅當a、b同向時,左邊取等號;
② 當且僅當a、b反向時,右邊取等號。
向量的加減法公式,向量的加減乘除怎麼算
a1 a1,a2,a3.an a2 b1,b2,bn 加法法則a1 a2 a1 b1 a2 b2 an bn 減法法則a1 a2 a1 b1 a2 b2 an bn 以上是針對座標向量的,如果不是座標形式要用三角形法則,對於加法 如ab bc ac,首尾相連 對於減法 如ab ac cb,減的向量終...
加減乘除快速計算的方法,加減乘除怎麼算
十幾乘十幾 口訣 頭乘頭,尾加尾,尾乘尾。例 12 14 解 1 1 1 注 個位相乘,不夠兩位數要用0佔位。頭相同,尾互補 尾相加等於10 口訣 乙個頭加 後,頭乘頭,尾乘尾。例 23 27 解 注 個位相乘,不夠兩位數要用0佔位。第乙個乘數互補,另乙個乘數數字相同 口訣 乙個頭加 後,頭乘頭,尾...
加減乘除算成語,用加減乘除算成語
四 面楚歌 一 視同仁 五 體投地 三 令五申 一 鳴驚人 四 平八穩 千 絲萬樓 十 有 萬 古長青 萬 眾一心 十 惡不赦 千 方百計 一 心一意 一 目十行 無 惡不作 望採納,謝謝!四 一 五 三 一 四 千 十 萬 萬 十 千 一 一 無 4 1 5 3 1 4 1000 10 10000...