1樓:淘汰
細心地發掘初二數學概念和公式
很多同學對概念和公式不夠重視,這類問題反映在三個方面:一是,對概念的理解只是停留在文字表面,對概念的特殊情況重視不夠。二是,對概念和公式一味的死記硬背。
三是,一部分同學不重視對初二數學公式的記憶。記憶是理解的基礎。
善於歸納總結初二數學相似的型別題目
當你會總結題目,對所做的題目會分類,知道自己能夠解決哪些題型,掌握了哪些常見的解題方法,還有哪些型別題不會做時,你才真正的掌握了這門學科的竅門,才能真正的做到「任它千變萬化,我自巋然不動」。
學會做初二數學錯題集,平時複習瀏覽
昂立新課程之所以建議大家收集自己初二數學典型錯誤和不會的題目,是因為,一旦你做了這件事,你就會發現,過去你認為自己有很多的小毛病,現在發現原來就是這乙個反覆在出現;過去你認為自己有很多問題都不懂,現在發現原來就這幾個關鍵點沒有解決。
就不懂的初二數學問題,積極提問、討論
發現了不懂的問題,積極向他人請教。「閉門造車」只會讓你的問題越來越多。討論是一種非常好的學習方法。
乙個比較難的初二數學題目,經過與同學討論,你可能就會獲得很好的靈感,從對方那裡學到好的方法和技巧。需要注意的是,討論的物件最好是與自己水平相當的同學,這樣有利於大家相互學習。
注重初二數學實戰(考試)經驗的培養
考試本身就是一門學問。每次考試,大家都要尋找一種適合自己的調整方法,久而久之,逐步適應考試節奏。做題速度慢的問題,需要同學們在平時的做題中解決。
自己平時做作業可以給自己限定時間,逐步提高效率。另外,在實際考試中,也要考慮每部分的完成時間,避免出現不必要的慌亂。
2樓:椿城居士
通過對歷年的中考進行綜合分析發現,中考試卷中幾乎50%以上的考點都會在初二的知識點中出現,而多數考試的重點難點和熱點也會在初二中涉及,尤其是在數學上,得初二數學才能得中高考數學的天下.
(一)一次函式與反比例函式
初二我們接觸的函式知識將貫穿初高中學習整個過程,是代數學習的重點內容,也是解決綜合問題的「強力工具」,它的學習效果,直接影響到中考中中難檔次題的解答.
1、採用模擬的方法,積累學習函式的常規順序,這將會使得你在函式繁雜的內容中找到方便記憶和呼叫知識的捷徑.如一般函式的學習都會是按照以下順序:剖析定義,表示方法,對應認識函式的圖象與性質,從函式的觀點再認識以前學習過的對應的方程和不等式(組),實際應用.
2、常見的考察熱點難點集中在其中數形結合的這部分內容上,大家可以有意識的在老師的指導下進行題目的歸納壓縮、方法優化.
其實整式、分式、二次根式的學習也是有其類似之處的,如果我們從模擬的角度去學習,將得到事半功倍的效果.
(二)全等三角形
這部分內容相對比較靈活,定理逐漸增多,幾何證明要求逐漸增加,很容易出現「虛假掌握」的情況(看解答都會,自己寫總覺得「差不多」,實際上總達不到解題要求).是特別體現幾何學習中基礎知識重要性和反思小結、解題策略重要性的地方.
1、重視基本格式.很多同學一開始不習慣幾何推理的寫法,其實有個很好的辦法,定期重複書寫一些重點題目,特別需要一字不差的落實.
2、收集常見的基本圖.在處理幾何問題時,如果能夠很快找到「眼熟」的圖形,就很快可以找到解題的突破點.
3、定期反思小結.幾何問題中,題目會顯得比代數問題雜亂,不能僅靠做大量的題來「應對」下一道「新題」,特別是以後到了四邊形,內容更加複雜,做不過來所有的題,更別提初三複習中那麼多的綜合幾何題了.因此,我們需要在早期養成定期反思小結的習慣.
很高興為你解答有用請採納
初二下學期數學的難點是哪些?
3樓:海風教育
很多的學生到了初中之後,發現自己的分數會有一定的下降,這可能是由於上初中之後數學科目的難度加大,所以分數會有一定的降低,那麼初中數學應該怎樣學?應該使用什麼方式哪?
知識點一般來說這像科目小學與初中的區別是非常大的,知識點需要了解的非常多,並且難點也是非常多的,解題的步驟要求會更加嚴厲,一般初中開始學習一些思想如方程思想等等,這是常見的.
初中數學應該怎麼學?--難點了解
初中的時候一般對計算能力要求比較高,各種方式比如,有理數等等這都需要多種方式的計算並且非常看重解答題目的能力,函式等等都會用到概念以及一些公式,下來就是四邊形等等,這些都需要完全的了解知識點之後在進行測試,並且在學習完之後大約在初三的時候就需要備戰中考,要將學過的知識全部都複習一次,需要全方面的了解各個方面的難點等等,所以在房價的時候需要找出一定的空閒時間進行複習以及預習的工作.
初中數學應該怎麼學?--知識圖
一般來說,畫出完成的知識圖可以使我們更快的清楚這方面的內容,要想學好的話必須要全面的熟悉這些知識點的運用,當遇到難點的時候可以換個角度去考慮,慢慢的就會找到自己的解題方式.
還需要了解各種的概念、公式、法則等等,這們課程是需要非常強的連貫性的,如果在遇到一些難點,那可能是某一點遇到了困難,某一些知識沒有懂,需要及時的找到然後解決,這樣分數才會有一定的提公升.
知識點當老師在講完內容之後會講一些課外的內容,一般是定理、概念等等,會讓你對這些知識更加的了解,所以如果對這類題目有問題的同學可以多看一些課外的題目,當然想要提公升分數是離不開練習題的,想要多好就需要多做一些習題,但是不可以過多,需要邊做邊思考才可以,這樣所學的知識就會運用出來.
以上就是初中數學應該怎樣學習的內容,如果在這個階段對自己分數不滿意的同學可以借鑑一下以上的內容,或許會對你有一定的幫助,將自身的分數提公升.
4樓:青龍天一
全都是難點不過比高中簡單一些,如果你要是抱著必須會的心態來學的話那你就趁早死心吧,因為數學不難的時候你想怎樣就怎樣,可真要到了難的時候你幾乎一點辦法都沒有只有乖乖的求放過,除此之外別無他法。所以說不難的時候沒有難點,真要難為你的話都變成難點了。
5樓:冷漠的輕水冰冰
基本上都是重點,難度不小!分式、反比例函式、勾股定理都是重點!
6樓:匿名使用者
明顯是函式裡的反比例函式,對於初二的學生來說,八年級上的一次函式剛剛學完,接著學更難的反比例函式。是該在寒假多準備,建議去大品牌的補習班。
初二數學的重難點有哪些?
7樓:憶曾經的留戀
你好!通過對歷年的中考進行綜合分析發現,中考試卷中幾乎50%以上的考點都會在初二的知識點中出現,而多數考試的重點難點和熱點也會在初二中涉及,尤其是在數學上,得初二數學才能得中高考數學的天下。
(一)一次函式與反比例函式
初二我們接觸的函式知識將貫穿初高中學習整個過程,是代數學習的重點內容,也是解決綜合問題的「強力工具」,它的學習效果,直接影響到中考中中難檔次題的解答。
1、採用模擬的方法,積累學習函式的常規順序,這將會使得你在函式繁雜的內容中找到方便記憶和呼叫知識的捷徑。如一般函式的學習都會是按照以下順序:剖析定義,表示方法,對應認識函式的圖象與性質,從函式的觀點再認識以前學習過的對應的方程和不等式(組),實際應用。
2、常見的考察熱點難點集中在其中數形結合的這部分內容上,大家可以有意識的在老師的指導下進行題目的歸納壓縮、方法優化。
其實整式、分式、二次根式的學習也是有其類似之處的,如果我們從模擬的角度去學習,將得到事半功倍的效果。
(二)全等三角形
這部分內容相對比較靈活,定理逐漸增多,幾何證明要求逐漸增加,很容易出現「虛假掌握」的情況(看解答都會,自己寫總覺得「差不多」,實際上總達不到解題要求)。是特別體現幾何學習中基礎知識重要性和反思小結、解題策略重要性的地方。
1、重視基本格式。很多同學一開始不習慣幾何推理的寫法,其實有個很好的辦法,定期重複書寫一些重點題目,特別需要一字不差的落實。
2、收集常見的基本圖。在處理幾何問題時,如果能夠很快找到「眼熟」的圖形,就很快可以找到解題的突破點。
3、定期反思小結。幾何問題中,題目會顯得比代數問題雜亂,不能僅靠做大量的題來「應對」下一道「新題」,特別是以後到了四邊形,內容更加複雜,做不過來所有的題,更別提初三複習中那麼多的綜合幾何題了。因此,我們需要在早期養成定期反思小結的習慣。
初一數學如何打好基礎?難點有哪些?
8樓:肥貓宰
怎樣打好初一數學基礎呢?
初中數學是乙個整體。初二的難點最多,初三的考點最多。相對而言,初一數學知識點雖然很多,但都比較簡單。
很多同學在學校裡的學習中感受不到壓力,慢慢積累了很多小問題,這些問題在進入初二,遇到困難(如學科的增加、難度的加深)後,就凸現出來。
現在中考網的初二學員中,有一部分新同學就是對初一數學不夠重視,在進入初二後,發現跟不上老師的進度,感覺學習數學越來越吃力,希望參加我們的輔導班來彌補的。這個問題究其原因,主要是對初一數學的基礎性,重視不夠。我們這裡先列舉一下在初一數學學習中經常出現的幾個問題:
1、對知識點的理解停留在一知半解的層次上;
2、解題始終不能把握其中關鍵的數學技巧,孤立的看待每一道題,缺乏舉一反三的能力;
3、解題時,小錯誤太多,始終不能完整的解決問題;
4、解題效率低,在規定的時間內不能完成一定量的題目,不適應考試節奏;
5、未養成總結歸納的習慣,不能習慣性的歸納所學的知識點;
以上這些問題如果在初一階段不能很好的解決,在初二的兩極分化階段,同學們可能就會出現成績的滑坡。相反,如果能夠打好初一數學基礎,初二的學習只會是知識點上的增多和難度的增加,在學習方法上同學們是很容易適應的。
那怎樣才能打好初一的數學基礎呢?
(1)細心地發掘概念和公式
很多同學對概念和公式不夠重視,這類問題反映在三個方面:一是,對概念的理解只是停留在文字表面,對概念的特殊情況重視不夠。例如,在代數式的概念(用字母或數字表示的式子是代數式)中,很多同學忽略了「單個字母或數字也是代數式」。
二是,對概念和公式一味的死記硬背,缺乏與實際題目的聯絡。這樣就不能很好的將學到的知識點與解題聯絡起來。三是,一部分同學不重視對數學公式的記憶。
記憶是理解的基礎。如果你不能將公式爛熟於心,又怎能夠在題目中熟練應用呢?
我的建議是:更細心一點(觀察特例),更深入一點(了解它在題目中的常見考點),更熟練一點(無論它以什麼面目出現,我們都能夠應用自如)
(2)總結相似的型別題目
這個工作,不僅僅是老師的事,我們的同學要學會自己做。當你會總結題目,對所做的題目會分類,知道自己能夠解決哪些題型,掌握了哪些常見的解題方法,還有哪些型別題不會
做時,你才真正的掌握了這門學科的竅門,才能真正的做到「任它千變萬化,我自巋然不動」。這個問題如果解決不好,在進入初
二、初三以後,同學們會發現,有一部分同學天天做題,可成績不公升反降。其原因就是,他們天天都在做重複的工作,很多相似的題目反覆做,需要解決的問題卻不能專心攻克。久而久之,不會的題目還是不會,會做的題目也因為缺乏對數學的整體把握,弄的一團糟。
我的建議是:「總結歸納」是將題目越做越少的最好辦法。
(3)收集自己的典型錯誤和不會的題目
同學們最難面對的,就是自己的錯誤和困難。但這恰恰又是最需要解決的問題。同學們做題目,有兩個重要的目的:
一是,將所學的知識點和技巧,在實際的題目中演練。另外乙個就是,找出自己的不足,然後彌補它。這個不足,也包括兩個方面,容易犯的錯誤和完全不會的內容。
但現實情況是,同學們只追求做題的數量,草草的應付作業了事,而不追求解決出現的問題,更談不上收集錯誤。我們之所以建議大家收集自己的典型錯誤和不會的題目,是因為,一旦你做了這件事,你就會發現,過去你認為自己有很多的小毛病,現在發現原來就是這乙個反覆在出現;過去你認為自己有很多問題都不懂,現在發現原來就這幾個關鍵點沒有解決。
我的建議是:做題就像挖金礦,每一道錯題都是一塊金礦,只有發掘、冶煉,才會有收穫。
(4)就不懂的問題,積極提問、討論
發現了不懂的問題,積極向他人請教。這是很平常的道理。但就是這一點,很多同學都做不到。
原因可能有兩個方面:一是,對該問題的重視不夠,不求甚解;二是,不好意思,怕問老師被訓,問同學被同學瞧不起。抱著這樣的心態,學習任何東西都不可能學好。
「閉門造車」只會讓你的問題越來越多。知識本身是有連貫性的,前面的知識不清楚,學到後面時,會更難理解。這些問題積累到一定程度,就會造成你對該學科慢慢失去興趣。
直到無法趕上步伐。
討論是一種非常好的學習方法。乙個比較難的題目,經過與同學討論,你可能就會獲得很好的靈感,從對方那裡學到好的方法和技巧。需要注意的是,討論的物件最好是與自己水平相當的同學,這樣有利於大家相互學習。
我的建議是:「勤學」是基礎,「好問」是關鍵。
(5)注重實戰(考試)經驗的培養
考試本身就是一門學問。有些同學平時成績很好,上課老師一提問,什麼都會。課下做題也都會。
可一到考試,成績就不理想。出現這種情況,有兩個主要原因:一是,考試心態不不好,容易緊張;二是,考試時間緊,總是不能在規定的時間內完成。
心態不好,一方面要自己注意調整,但同時也需要經歷大型考試來鍛鍊。每次考試,大家都要尋找一種適合自己的調整方法,久而久之,逐步適應考試節奏。做題速度慢的問題,需要同學們在平時的做題
中解決。自己平時做作業可以給自己限定時間,逐步提高效率。另外,在實際考試中,也要考慮每部分的完成時間,避免出現不必要的慌亂。
我的建議是:把「做作業」當成考試,把「考試」當成做作業。
以上,我們就初一數學經常出現的問題,給出了建議,但有一點要強調的是,任何方法最重要的是有效,同學們在學習中千萬要避免形式化,要追求實效。任何考試都是考人的頭腦,決不是考大家的筆記記的是否清楚,計畫制定的是否周全。
望採納,謝謝~
初二下學期數學期末總結初二下學期數學期末總結
平移與旋轉 旋轉1.旋轉的定義 在平面內,將乙個圖形繞乙個定點沿某個方向轉動乙個角度,這樣的圖形運動叫做旋轉。2.旋轉的性質 旋轉後得到的圖形與原圖形之間有 對應點到旋轉中心的距離相等,旋轉角相等。中心對稱 1.中心對稱的定義 如果乙個圖形繞某一點旋轉180度後能與另乙個圖形重合,那麼這兩個圖形叫做...
小學沒有學會現在初二下學期學數學能來急嗎?幫我解決下,謝謝
既然知道現在開始學很麻煩 很可能學不好 所以自己就要開始刻苦努力的去學 只要你有信心能學好就一定可以 不要一開始就擔心自己學不好 那樣的開始對於你學習有著負面影響 相信自己 鼓勵自己 這種心態很會潛移默化的影響你的 當然是往好的方向了 再加上自己的用功 一定可以學好的 畢竟這也是數學裡面的基礎部分了...
我現在初二了,馬上就初二下學期,是個轉折點,我的數學和物理成
千萬不要自卑,自卑只會然你更加學不好,你要相信自己會學好,有條件的話就去找好一點的老師補補課,老師講的題目要理解,如果當場理解不了,就記下做題的過程,回家慢慢研究,上課時記住老師講的重點,物理就有尤其要記住每個公式,還要記住公示的轉變。不要去和別人比,有些人的確在理科方面有天分,但如果他們真的上課什...