1樓:臥諶巫話
綠蘿蘭馨,發給你。
可能需要給你解析一下。
求解0-1整收規劃:max z=3x1-2x2+5x3
2樓:
例 求解下列0-1整數線性規劃
目標函式
max f=-3x1+2x2-5x3
約束條件
x1+2x2-x3≤2,
x1+4x2+x3≤4,
x1+x2≤3,
4x1+x3≤6,
x1,x2,x3為0或1.
在matlab命令視窗中輸入如下命令:
f=[-3,2,-5];
a=[1,2,-1,;1,4,1;1,1,0;0,4,1];b=[2;4;3;6];
[x,fval]=bintprog(-f,a,b)%因為bintprog求解的為目標函式的最小值,所以要在f前面加個負號。
執行結果為:
optimization terminated.
x = 0
1 0fval = -2
表示x1=0,x2=1,x3=0時,f取最大值2。
當然,我們還可以在matlab命令視窗中輸入如下命令查詢0-1整數規劃命令的用法。
help bintprog
用單純形法求解線性規劃問題 maxz=2x1-x2+x3,
3樓:立港娜娜
偶形式: 2y1-y2-y3=-2 3y1-2y2-3y3=-4 求 max -24y1+10y2+15y3 優解 y1=0,y2=2,y3=0 優值20設原始問題min則其偶問題 max。
原問題引入人工變數x4,剩餘變數x5,人工變數x6 。
maxz=2x1+3x2-5x3 -mx4-mx6、x1+x2+x3+x4=7,2x1-5x2+x3-x5+x6=10,x1,x2,x3,x4,x5,x6≥0用人工變數法求解。
1、線性規劃簡介:
線性規劃步驟:
(1)列出約束條件及目標函式。
(2)畫出約束條件所表示的可行域。
(3)在可行域內求目標函式的最優解及最優值。
2、標準型:
描述線性規劃問題的常用和最直觀形式是標準型。標準型包括以下三個部分:
乙個需要極大化的線性函式:
以下形式的問題約束:
和非負變數:
其他型別的問題,例如極小化問題,不同形式的約束問題,和有負變數的問題,都可以改寫成其等價問題的標準型。
3、模型建立、
從實際問題中建立數學模型一般有以下三個步驟;
1、根據影響所要達到目的的因素找到決策變數。
2、由決策變數和所在達到目的之間的函式關係確定目標函式。
線性規劃難題解法:
3、由決策變數所受的限制條件確定決策變數所要滿足的約束條件。
所建立的數學模型具有以下特點:
1、每個模型都有若干個決策變數(x1,x2,x3……,xn),其中n為決策變數個數。決策變數的一組值表示一種方案,同時決策變數一般是非負的。
2、目標函式是決策變數的線性函式,根據具體問題可以是最大化(max)或最小化(min),二者統稱為最優化(opt)。
3、約束條件也是決策變數的線性函式。
當我們得到的數學模型的目標函式為線性函式,約束條件為線性等式或不等式時稱此數學模型為線性規劃模型。
4、解法:
求解線性規劃問題的基本方法是單純形法,已有單純形法的標準軟體,可在電子計算機上求解約束條件和決策變數數達 10000個以上的線性規劃問題。
為了提高解題速度,又有改進單純形法、對偶單純形法、原始對偶方法、分解演算法和各種多項式時間演算法。對於只有兩個變數的簡單的線性規劃問題,也可採用**法求解。
這種方法僅適用於只有兩個變數的線性規劃問題。它的特點是直觀而易於理解,但實用價值不大。通過**法求解可以理解線性規劃的一些基本概念。
**法解線性規劃問題:
對於一般線性規劃問題:min z=cx、s.t、ax =b、x>=0其中a為乙個m*n矩陣。
若a行滿秩、則可以找到基矩陣b,並尋找初始基解。用n表示對應於b的非基矩陣。則規劃問題1可化為:
規劃問題2:
min z=cb xb+cnxn。
線性規劃法解題
s.t.b xb+n xn = b (1)、xb >= 0, xn >= 0 (2)(1)兩邊同乘於b-1,得xb + b-1 n xn = b-1 b。
同時,由上式得xb = b-1 b - b-1 n xn,也代入目標函式,問題可以繼續化為:
規劃問題3:
min z=cb b-1 b + ( cn - cb b-1 n ) xn、xb+b-1n xn = b-1 b (1)、xb >= 0, xn >= 0 (2)。
令n:=b-1n,b:= b-1 b,ζ= cb b-1b,σ= cn - cb b-1 n,則上述問題化為規劃問題形式4:
min z= ζ + σ xn、xb+ n xn = b (1)、xb >= 0, xn >= 0 (2)。
在上述變換中,若能找到規劃問題形式4,使得b>=0,稱該形式為初始基解形式。
上述的變換相當於對整個擴充套件矩陣(包含c及a) 乘以增廣矩陣。所以重在選擇b,從而找出對應的cb。
若存在初始基解:若σ>= 0
則z >=ζ。同時,令xn = 0,xb = b,這是乙個可行解,且此時z=ζ,即達到最優值。所以,此時可以得到最優解。
若不成立:
可以採用單純形表變換。
σ中存在分量<0。這些負分量對應的決策變數編號中,最小的為j。n中與j對應的列向量為pj。
若pj <=0不成立。
則pj至少存在乙個分量ai,j為正。在規劃問題4的約束條件:
(1)的兩邊乘以矩陣t。
則變換後,決策變數xj成為基變數,替換掉原來的那個基變數。為使得t b >= 0,且t pj=ei(其中,ei表示第i個單位向量),需要:
l ai,j>0。
l βq+βi*(-aq,j/ai,j)>=0,其中q!=i。即βq>=βi/ ai,j * aq,j。
n 若aq,j<=0,上式一定成立。
n 若aq,j>0,則需要βq / aq,j >=βi/ ai,j。因此,要選擇i使得βi/ ai,j最小。
如果這種方法確定了多個下標,選擇下標最小的乙個。
轉換後得到規劃問題4的形式,繼續對σ進行判斷。由於基解是有限個,因此,一定可以在有限步跳出該迴圈。
若對於每乙個i,ai,j<=0最優值無解。
若不能尋找到初始基解無解。
若a不是行滿秩化簡直到a行滿秩,轉到若a行滿秩。
用大m法和二階段法,解下面問題。 maxz=6x1+5x2 s.t 3x1+2x2>=6 3x1+5x2<=30 x1,x1>=0
4樓:route淡定人生
等候著,忽然發出唧唧聲,一連輕輕
遠處有一件樂器
是繁星點點
七月的孩子
遠方的山嶺撲著藍粉,像女郎的眼瞼,
他的的活平淡的如水哈哈
不等式線性規劃問題,關於不等式的線性規劃問題
平面區域內的點座標 x,y x 3 y 3 的幾何意義是點 x,y 與定點 3,3 兩點間 距離的平方 所以,先確定平面區域內哪個點離點 3,3 最遠,並求出這個最遠距離,再求其平方即為所求的最大值 z x 3 y 3 相當於是以 3,3 為圓心 根號z為半徑的圓!z最大 即 圓半徑最大 取區域中離...
數學線性規劃問題怎麼求最大值最小值
呃,一般copy 情況下,是把cz ax by a,b,c為任意非零實數 變為y cz b ax b,平移直線的y軸的截距為cz b,在x最大值或最小值處可以得最大或最小的截距,再根據z的係數 c b 的符號,可以知是最大還是最小值。該直線所對應的點所得的x,y代入關係式 高一線性規劃最大值和最小值...
高一數學線性規劃的問題用平移直線法怎麼知道哪個是最大值哪個是最小值求速度定採納
呃,一般情況下,是把cz ax by a,b,c為任意非零實數 變為y cz b ax b,平移直線的y軸的截距為cz b,在x最大值 專或最小值處可屬 以得最大或最小的截距,再根據z的係數 c b 的符號,可以知是最大還是最小值。該直線所對應的點所得的x,y代入關係式,可得z的最值 數學簡單的線性...