兩條相交線可以確定唯一的內切圓嗎

2021-03-17 08:33:47 字數 2346 閱讀 9690

1樓:馨茹絮

紙摺情況線條處同平面說紙折兩條線處同平面內交點

另外由於紙限制紙能畫能線段即使兩條線段平行紙未必交點交點線段延線紙畫

原句描述夠嚴謹

2樓:

不可,無窮多個,圓心位於角平分線上

圓內的角

3樓:匿名使用者

圓心角定理:同圓或等圓中,相等的圓心角所對的弦相等,所對的弧相等,弦心距相等

同一條弧所對的圓周角等於它所對的圓心的角的一半

同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧是等弧

半圓或直徑所對的圓周角是直角;圓周角是直角所對的弧是半圓,所對的弦是直徑

三角形一邊上的中線等於這邊的一半,那麼這個三角形是直角三角形

弦切角等於所夾弧所對的圓周角

推論:如果兩個弦切角所夾的弧相等,那麼這兩個弦切角也相等。

圓的內接四邊形定理:圓的內接四邊形的對角互補,外角等於它的內對角。

〖圓的定義〗

幾何說:平面上到定點的距離等於定長的所有點組成的圖形叫做圓。定點稱為圓心,定長稱為半徑。

軌跡說:平面上一動點以一定點為中心,一定長為距離運動一週的軌跡稱為圓周,簡稱圓。

集合說:到定點的距離等於定長的點的集合叫做圓。

〖圓的相關量〗

圓周率:圓周長度與圓的直徑長度的比叫做圓周率,值是3.14159265358979323846…,通常用π表示,計算中常取3.1416為它的近似值。

圓弧和弦:圓上任意兩點間的部分叫做圓弧,簡稱弧。大於半圓的弧稱為優弧,小於半圓的弧稱為劣弧。連線圓上任意兩點的線段叫做弦。經過圓心的弦叫做直徑。

圓心角和圓周角:頂點在圓心上的角叫做圓心角。頂點在圓周上,且它的兩邊分別與圓有另乙個交點的角叫做圓周角。

內心和外心:過三角形的三個頂點的圓叫做三角形的外接圓,其圓心叫做三角形的外心。和三角形三邊都相切的圓叫做這個三角形的內切圓,其圓心稱為內心。

扇形:在圓上,由兩條半徑和一段弧圍成的圖形叫做扇形。圓錐側面圖是乙個扇形。這個扇形的半徑成為圓錐的母線。

〖圓和圓的相關量字母表示方法〗

圓—⊙ 半徑—r 弧—⌒ 直徑—d

扇形弧長/圓錐母線—l 周長—c 面積—s

〖圓和其他圖形的位置關係〗

圓和點的位置關係:以點p與圓o的為例(設p是一點,則po是點到圓心的距離),p在⊙o外,po>r;p在⊙o上,po=r;p在⊙o內,po<r。

直線與圓有3種位置關係:無公共點為相離;有兩個公共點為相交;圓與直線有唯一公共點為相切,這條直線叫做圓的切線,這個唯一的公共點叫做切點。以直線ab與圓o為例(設op⊥ab於p,則po是ab到圓心的距離):

ab與⊙o相離,po>r;ab與⊙o相切,po=r;ab與⊙o相交,po<r。

兩圓之間有5種位置關係:無公共點的,一圓在另一圓之外叫外離,在之內叫內含;有唯一公共點的,一圓在另一圓之外叫外切,在之內叫內切;有兩個公共點的叫相交。兩圓圓心之間的距離叫做圓心距。

兩圓的半徑分別為r和r,且r≥r,圓心距為p:外離p>r+r;外切p=r+r;相交r-r<p<r+r;內切p=r-r;內含p<r-r。

【圓的平面幾何性質和定理】

〖有關圓的基本性質與定理〗

圓的確定:不在同一直線上的三個點確定乙個圓。

圓的對稱性質:圓是軸對稱圖形,其對稱軸是任意一條過圓心的直線。圓也是中心對稱圖形,其對稱中心是圓心。

垂徑定理:垂直於弦的直徑平分這條弦,並且平分弦所對的弧。逆定理:平分弦(不是直徑)的直徑垂直於弦,並且平分弦所對的弧。

〖有關圓周角和圓心角的性質和定理〗

在同圓或等圓中,如果兩個圓心角,兩個圓周角,兩條弧,兩條弦中有一組量相等,那麼他們所對應的其餘各組量都分別相等。

一條弧所對的圓周角等於它所對的圓心角的一半。

直徑所對的圓周角是直角。90度的圓周角所對的弦是直徑。

〖有關外接圓和內切圓的性質和定理〗

乙個三角形有唯一確定的外接圓和內切圓。外接圓圓心是三角形各邊垂直平分線的交點,到三角形三個頂點距離相等;內切圓的圓心是三角形各內角平分線的交點,到三角形三邊距離相等。

〖有關切線的性質和定理〗

圓的切線垂直於過切點的直徑;經過直徑的一端,並且垂直於這條直徑的直線,是這個圓的切線。

切線判定定理:經過半徑外端並且垂直於這條半徑的直線是圓的切線。

切線的性質:(1)經過圓心垂直於這條半徑的直線是圓的切線。(2)經過切點垂直於切線的直線必經過圓心。(3)圓的切線垂直於經過切點的半徑。

切線的長定理:從圓外一點到圓的兩條切線的長相等。

〖有關圓的計算公式〗

1.圓的周長c=2πr=πd 2.圓的面積s=πr² 3.扇形弧長l=nπr/180

4.扇形面積s=nπr²/360=rl/2 5.圓錐側面積s=πrl

兩條平行線可以相交嗎 平行線可以相交嗎為什麼

理論上不相交,如果是三維空間的話,可能會相交,比如,將劃平行線的紙對折,即會相交。即任何事情都是非絕對的。目前公認的有兩種幾何 歐氏幾何與非歐幾何。歐氏幾何的平行公理由於一直未通過其它定理證明使之成為定理,使一些敢於思考的人開始懷疑。不能相交。但即使不能相交,他們也不會放棄相交的希望。哪怕永遠這樣彼...

兩個人就如兩條平行線一樣,永遠都不可能相交嗎

假如兩條線平行了,那塵世間何來的男女呢 那要看是什麼樣的兩個人了.兩個世界的人,就像兩條平行線,永遠都不會有交點嗎?數學上平行線就是永遠不相交的兩條直線,但情感上,有追求,有夢想,就有希望 o o.相信李寧 一切皆有可能 樓主的意思是說倆個 世界 的人吧。有沒可能在一起吧。答案是 當然有可能啊!只要...

如何過一點作一條和兩條交叉直線相交的直線畫法幾何

以這個點和其中一條直線組成乙個平面,交另一條直線於一點,連線兩點就好了。平面作圖你應該會吧。可以通過投影變換,將其中一條直線變換為新投影座標中得投影面垂直線,後面就是過已知點做點與直線得交線 先畫兩條交叉的相交直線,在畫一條直過他們的交點的直線。我猜你的語文學的不是很好啊?請問在幾何畫法中,怎樣畫一...