1樓:陽光下的幽林
常用的數量關係式
1、每份數×份數=總數 總數÷每份數=份數 總數÷份數=每份數
2、1倍數×倍數=幾倍數 幾倍數÷1倍數=倍數 幾倍數÷倍數=1倍數
3、速度×時間=路程 路程÷速度=時間 路程÷時間=速度
4、單價×數量=總價 總價÷單價=數量 總價÷數量=單價
5、工作效率×工作時間=工作總量 工作總量÷工作效率=工作時間 工作總量÷工作時間=工作效率
6、加數+加數=和 和-乙個加數=另乙個加數
7、被減數-減數=差 被減數-差=減數 差+減數=被減數
8、因數×因數=積 積÷乙個因數=另乙個因數
9、被除數÷除數=商 被除數÷商=除數 商×除數=被除數
小學數學圖形計算公式
1、正方形 (c:周長 s:面積 a:邊長 )
周長=邊長×4 c=4a 面積=邊長×邊長 s=a×a
2、正方體 (v:體積 a:稜長 )
表面積=稜長×稜長×6 s表=a×a×6 體積=稜長×稜長×稜長 v=a×a×a
3、長方形( c:周長 s:面積 a:邊長 )
周長=(長+寬)×2 c=2(a+b) 面積=長×寬 s=ab
4、長方體 (v:體積 s:面積 a:長 b: 寬 h:高)
(1)表面積(長×寬+長×高+寬×高)×2 s=2(ab+ah+bh) (2)體積=長×寬×高 v=abh
5、三角形 (s:面積 a:底 h:高)
面積=底×高÷2 s=ah÷2 三角形高=面積 ×2÷底 三角形底=面積 ×2÷高
6、平行四邊形 (s:面積 a:底 h:高)
面積=底×高 s=ah
7、梯形 (s:面積 a:上底 b:下底 h:高)
面積=(上底+下底)×高÷2 s=(a+b)× h÷2
8、圓形 (s:面積 c:周長 л d=直徑 r=半徑)
(1)周長=直徑×л=2×л×半徑 c=лd=2лr (2)面積=半徑×半徑×л
9、圓柱體 (v:體積 h:高 s:底面積 r:底面半徑 c:底面周長)
(1)側面積=底面周長×高=ch(2лr或лd) (2)表面積=側面積+底面積×2
(3)體積=底面積×高 (4)體積=側面積÷2×半徑
10、圓錐體 (v:體積 h:高 s:底面積 r:底面半徑)
體積=底面積×高÷3
11、總數÷總份數=平均數
12、和差問題的公式:(和+差)÷2=大數 (和-差)÷2=小數
13、和倍問題: 和÷(倍數-1)=小數 小數×倍數=大數 (或者 和-小數=大數)
14、差倍問題: 差÷(倍數-1)=小數 小數×倍數=大數 (或 小數+差=大數)
15、相遇問題
相遇路程=速度和×相遇時間; 相遇時間=相遇路程÷速度和; 速度和=相遇路程÷相遇時間
16、濃度問題
溶質的重量+溶劑的重量=溶液的重量 溶質的重量÷溶液的重量×100%=濃度
溶液的重量×濃度=溶質的重量 溶質的重量÷濃度=溶液的重量
17、利潤與折扣問題
利潤=售出價-成本; 利潤率=利潤÷成本×100%=(售出價÷成本-1)×100%
漲跌金額=本金×漲跌百分比; 利息=本金×利率×時間; 稅後利息=本金×利率×時間×(1-20%)
常用單位換算
長度單位換算
1千公尺=1000公尺 1公尺=10分公尺 1分公尺=10釐公尺 1公尺=100釐公尺 1釐公尺=10公釐
面積單位換算:
1平方千公尺=100公頃 1公頃=10000平方公尺 1平方公尺=100平方分公尺
1平方分公尺=100平方厘公尺 1平方厘公尺=100平方公釐
體(容)積單位換算:
1立方公尺=1000立方分公尺 1立方分公尺=1000立方厘公尺 1立方分公尺=1公升
1立方厘公尺=1毫公升 1立方公尺=1000公升
重量單位換算: 1噸=1000 千克 1千克=1000克 1千克=1公斤
人民幣單位換算: 1元=10角 1角=10分 1元=100分
時間單位換算:
1世紀=100年 1年=12月 大月(31天)有:1\3\5\7\8\10\12月 小月(30天)的有:4\6\9\11月
平年2月28天, 閏年2月29天 平年全年365天, 閏年全年366天 1日=24小時
1時=60分 1分=60秒 1時=3600秒
基本概念
第一章 數和數的運算
一 概念
(一)整數
1 整數的意義: 自然數和0都是整數。
2 自然數:
我們在數物體的時候,用來表示物體個數的1,2,3……叫做自然數。
乙個物體也沒有,用0表示。0也是自然數。
3計數單位
一(個)、十、百、千、萬、十萬、百萬、千萬、億……都是計數單位。
每相鄰兩個計數單位之間的進率都是10。這樣的計數法叫做十進位制計數法。
4 數字: 計數單位按照一定的順序排列起來,它們所佔的位置叫做數字。
5數的整除
整數a除以整數b(b ≠ 0),除得的商是整數而沒有餘數,我們就說a能被b整除,或者說b能整除a 。
如果數a能被數b(b ≠ 0)整除,a就叫做b的倍數,b就叫做a的約數(或a的因數)。倍數和約數是相互依存的。
因為35能被7整除,所以35是7的倍數,7是35的約數。
乙個數的約數的個數是有限的,其中最小的約數是1,最大的 約數是它本身。例如:10的約數有1、2、5、10,其中最小的約數是1,最大的約數是10。
乙個數的倍數的個數是無限的,其中最小的倍數是它本身。3的倍數有:3、6、9、12……其中最小的倍數是3 ,沒有最大的倍數。
個位上是0、2、4、6、8的數,都能被2整除,例如:202、480、304,都能被2整除。。
個位上是0或5的數,都能被5整除,例如:5、30、405都能被5整除。。
乙個數的各位上的數的和能被3整除,這個數就能被3整除,例如:12、108、204都能被3整除。
乙個數各位數上的和能被9整除,這個數就能被9整除。
能被3整除的數不一定能被9整除,但是能被9整除的數一定能被3整除。
乙個數的末兩位數能被4(或25)整除,這個數就能被4(或25)整除。例如:16、404、1256都能被4整除,50、325、500、1675都能被25整除。
乙個數的末三位數能被8(或125)整除,這個數就能被8(或125)整除。例如:1168、4600、5000、12344都能被8整除,1125、13375、5000都能被125整除。
能被2整除的數叫做偶數。
不能被2整除的數叫做奇數。
0也是偶數。自然數按能否被2 整除的特徵可分為奇數和偶數。
乙個數,如果只有1和它本身兩個約數,這樣的數叫做質數(或素數),100以內的質數有:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97。
乙個數,如果除了1和它本身還有別的約數,這樣的數叫做合數,例如 4、6、8、9、12都是合數。
1不是質數也不是合數,自然數除了1外,不是質數就是合數。如果把自然數按其約數的個數的不同分類,可分為質數、合數和1。
每個合數都可以寫成幾個質數相乘的形式。其中每個質數都是這個合數的因數,叫做這個合數的質因數,例如15=3×5,3和5 叫做15的質因數。
把乙個合數用質因數相乘的形式表示出來,叫做分解質因數。
例如把28分解質因數
幾個數公有的約數,叫做這幾個數的公約數。其中最大的乙個,叫做這幾個數的最大公約數,例如12的約數有1、2、3、4、6、12;18的約數有1、2、3、6、9、18。其中,1、2、3、6是12和1 8的公約數,6是它們的最大公約數。
公約數只有1的兩個數,叫做互質數,成互質關係的兩個數,有下列幾種情況:
1和任何自然數互質。
相鄰的兩個自然數互質。
兩個不同的質數互質。
當合數不是質數的倍數時,這個合數和這個質數互質。
兩個合數的公約數只有1時,這兩個合數互質,如果幾個數中任意兩個都互質,就說這幾個數兩兩互質。
如果較小數是較大數的約數,那麼較小數就是這兩個數的最大公約數。
如果兩個數是互質數,它們的最大公約數就是1。
幾個數公有的倍數,叫做這幾個數的公倍數,其中最小的乙個,叫做這幾個數的最小公倍數,如2的倍數有2、4、6 、8、10、12、14、16、18 ……
3的倍數有3、6、9、12、15、18 …… 其中6、12、18……是2、3的公倍數,6是它們的最小公倍數。。
如果較大數是較小數的倍數,那麼較大數就是這兩個數的最小公倍數。
如果兩個數是互質數,那麼這兩個數的積就是它們的最小公倍數。
幾個數的公約數的個數是有限的,而幾個數的公倍數的個數是無限的。
(二)小數
1 小數的意義
把整數1平均分成10份、100份、1000份…… 得到的十分之幾、百分之幾、千分之幾…… 可以用小數表示。
一位小數表示十分之幾,兩位小數表示百分之幾,三位小數表示千分之幾……
乙個小數由整數部分、小數部分和小數點部分組成。數中的圓點叫做小數點,小數點左邊的數叫做整數部分,小數點左邊的數叫做整數部分,小數點右邊的數叫做小數部分。
在小數里,每相鄰兩個計數單位之間的進率都是10。小數部分的最高分數單位「十分之一」和整數部分的最低單位「一」之間的進率也是10。
2小數的分類
純小數:整數部分是零的小數,叫做純小數。例如: 0.25 、 0.368 都是純小數。
帶小數:整數部分不是零的小數,叫做帶小數。 例如: 3.25 、 5.26 都是帶小數。
有限小數:小數部分的數字是有限的小數,叫做有限小數。 例如: 41.7 、 25.3 、 0.23 都是有限小數。
無限小數:小數部分的數字是無限的小數,叫做無限小數。 例如: 4.33 …… 3.1415926 ……
無限不迴圈小數:乙個數的小數部分,數字排列無規律且位數無限,這樣的小數叫做無限不迴圈小數。 例如:∏
迴圈小數:乙個數的小數部分,有乙個數字或者幾個數字依次不斷重複出現,這個數叫做迴圈小數。 例如: 3.555 …… 0.0333 …… 12.109109 ……
乙個迴圈小數的小數部分,依次不斷重複出現的數字叫做這個迴圈小數的迴圈節。 例如: 3.99 ……的迴圈節是「 9 」 , 0.5454 ……的迴圈節是「 54 」 。
純迴圈小數:迴圈節從小數部分第一位開始的,叫做純迴圈小數。 例如: 3.111 …… 0.5656 ……
混迴圈小數:迴圈節不是從小數部分第一位開始的,叫做混迴圈小數。 3.1222 …… 0.03333 ……
寫迴圈小數的時候,為了簡便,小數的迴圈部分只需寫出乙個迴圈節,並在這個迴圈節的首、末位數字上各點乙個圓點。如果迴圈 節只有 乙個數字,就只在它的上面點乙個點。例如:
3.777 …… 簡寫作 0.5302302 …… 簡寫作 。
(三)分數
1 分數的意義
把單位「1」平均分成若干份,表示這樣的乙份或者幾份的數叫做分數。
在分數裡,中間的橫線叫做分數線;分數線下面的數,叫做分母,表示把單位「1」平均分成多少份;分數線下面的數叫做分子,表示有這樣的多少份。
把單位「1」平均分成若干份,表示其中的乙份的數,叫做分數單位。
2 分數的分類
真分數:分子比分母小的分數叫做真分數。真分數小於1。
假分數:分子比分母大或者分子和分母相等的分數,叫做假分數。假分數大於或等於1。
帶分數:假分數可以寫成整數與真分數合成的數,通常叫做帶分數。
3 約分和通分
把乙個分數化成同它相等但是分子、分母都比較小的分數 ,叫做約分。
分子分母是互質數的分數,叫做最簡分數。
把異分母分數分別化成和原來分數相等的同分母分數,叫做通分。
(四)百分數
1 表示乙個數是另乙個數的百分之幾的數 叫做百分數,也叫做百分率 或百分比。百分數通常用"%"來表示。百分號是表示百分數的符號。
運算定律
1. 加法交換律:
兩個數相加,交換加數的位置,它們的和不變,即a+b=b+a 。
2. 加法結合律:
三個數相加,先把前兩個數相加,再加上第三個數;或者先把後兩個數相加,再和第乙個數相加它們的和不變,即(a+b)+c=a+(b+c) 。
3. 乘法交換律:
兩個數相乘,交換因數的位置它們的積不變,即a×b=b×a。
4. 乘法結合律:
三個數相乘,先把前兩個數相乘,再乘以第三個數;或者先把後兩個數相乘,再和第乙個數相乘,它們的積不變,即(a×b)×c=a×(b×c) 。
5. 乘法分配律:
兩個數的和與乙個數相乘,可以把兩個加數分別與這個數相乘再把兩個積相加,即(a+b)×c=a×c+b×c 。
6. 減法的性質:
從乙個數里連續減去幾個數,可以從這個數里減去所有減數的和,差不變,即a-b-c=a-(b+c) 。
初中語文知識點總結,初中數學知識點總結
中學語文 基礎知識學習記憶口訣 一 漢語拼音 a o e,i u 標調多按此順序 額 初中好久遠的詞咯 呵呵 小感一下哈 其實初中語文最重要的知識點可以說就是課本上所列的生字,詞語或成語,不要認為這種想法很幼稚,而且認為自己已經認識很多的字咯,就不記它或是偷懶哈,這可要不得地。還有每章後面好像都有關...
初中數學知識點總結
很多的學生到了初中之後,發現自己的分數會有一定的下降,這可能是由於上初中之後數學科目的難度加大,所以分數會有一定的降低,那麼初中數學應該怎樣學?應該使用什麼方式哪?知識點一般來說這像科目小學與初中的區別是非常大的,知識點需要了解的非常多,並且難點也是非常多的,解題的步驟要求會更加嚴厲,一般初中開始學...
小學六年級數學的知識點總結
1到6年級數學公式 1 每份數 份數 總數 總數 每份數 份數 總數 份數 每份數 2.1倍數 倍數 幾倍數 幾倍數 1倍數 倍數 幾倍數 倍數 1倍數 3.速度 時間 路程 路程 速度 時間 路程 時間 速度 4.單價 數量 總價 總價 單價 數量 總價 數量 單價 5.工作效率 工作時間 工作總...