冷變形強化對金屬組織效能有何影響在實際生產中怎樣運用其他有利因素

2021-03-27 20:41:07 字數 5972 閱讀 5278

1樓:匿名使用者

冷變形強化也稱冷作強化,如鐵板在經過冷作加工後會明顯變硬,這是因為冷作加工後組織緊密所致,但有些冷作加工後的材料要經過低溫回火處理,否則強度要打折扣,8公釐以下的中、高碳鋼絲冷作加工後必須要低溫回火【也稱定型】處理,不然的話他冷作加工後的內應力會使強度和屈服極限大大降低

金屬冷變形後產生的加工硬化現象,在生產中有何利弊

2樓:楊好巨蟹座

①隨著變形的增加,晶粒逐漸被拉長,直至破碎,這樣使各晶粒都破碎成細碎的亞晶粒,變形愈大,晶粒破碎的程度愈大,這樣使位錯密度顯著增加;同時細碎的亞晶粒也隨著晶粒的拉長而被拉長。因此,隨著變形量的增加,由於晶粒破碎和位錯密度的增加,金屬的塑性變形抗力將迅速增大,即強度和硬度顯著提高,而塑性和韌性下降產生所謂「加工硬化」現象。②金屬的加工硬化現象會給金屬的進一步加工帶來困難,如鋼板在冷軋過程中會越軋越硬,以致最後軋不動。

另一方面人們可以利用加工硬化現象,來提高金屬強度和硬度,如冷拔高強度鋼絲就是利用冷加工變形產生的加工硬化來提高鋼絲的強度的。加工硬化也是某些壓力加工工藝能夠實現的重要因素。如冷拉鋼絲拉過模孔的部分,由於發生了加工硬化,不再繼續變形而使變形轉移到尚未拉過模孔的部分,這樣鋼絲才可以繼續通過模孔而成形。

冷變形強化對金屬的組織有什麼影響?

3樓:匿名使用者

將淬火後的工件,在零度以下的低溫介質中繼續冷卻到零下80℃,待工件截面冷到溫度均勻一致後,取出空冷。可使殘餘奧氏體全部或大部分轉變為馬氏體。因此,不僅提高了工件硬度,抗拉強度,還可以穩定工件尺寸。

層錯能的大小對冷變形金屬組織中的位錯分布有什麼影響,為什麼 20

4樓:沈耀

層錯能較高的金來屬和源合金,其擴充套件位錯區較窄,可通過束集而發生交滑移,因此在變形過程中通過位錯的增殖和互動作用,容易出現明顯的胞狀結構。

反之,層錯能低的,在材料中易觀察到位錯塞積群的存在。同時,由於位錯的移動性差,形變後大量的位錯雜亂的排列於晶體中,構成較為均勻分布的複雜網路。

冷變形強化對鍛壓加工有何影響?如何消除冷變形強化現象?

5樓:匿名使用者

冷變型強化將增加工件的強度,這導致鍛壓加工時加工力變大,嚴重可使鍛壓模具損壞,或工件斷裂等,可通過退火的方式,消除強化現象

6樓:匿名使用者

可以在常溫下製冷!使使在室溫下改變它原本的屬性!或者添某種物質是原本的效能性質改變!但是所添的物質要保證在不改變物體本身的效能、引數,化學跟物理量!當心核變,祝願你成功!

熱塑性加工對金屬的組織和效能有何影響

7樓:v電

(1)改善鑄錠組織。消除空洞、細化晶粒、降回低偏析;提高強答度、塑性、韌性。

(2) 形成纖維組織(流線)。 第二相或夾雜物沿變形方向呈纖維狀分布, 沿流線方向比垂直於流線 方向的力學效能好, 熱加工沒有加工硬化現象,或者說加工硬化被隨時消除了,所以變形阻力小。

塑性變形對金屬組織和效能有那些影響?謝謝了……

8樓:匿名使用者

金屬塑性變形理論應用於兩個領域:①解決金屬的強度問題,包括基礎性的研究和使用設計等;②**塑性加工,解決施加的力和變形條件間的關係,以及塑性變形後材料的性質變化等(見形變和斷裂)。

塑性變形對組織和結構的影響

1)形成纖維組織 晶粒延變形方向被拉長或壓扁; 雜質呈細帶狀或鏈狀分布。

2) 形成形變織構 (1) 形變織構: 多晶體材料由塑性變形導致的各晶粒呈

擇優取向的組織。

(2) 線(絲)織構: 某一晶向趨於與變形方向平行。

(如拉拔時形成)

面(板)織構: 某晶面趨於平行於軋製面,某晶向趨於平

行於主變形方向。(軋製或擠壓時形成)

3) 形成位錯胞(亞結構)

金屬在大量變形之後,由於位錯的運動和互動作用,位錯不均勻分布,使晶粒碎化成許多位向略有差異的亞晶粒。亞晶粒邊界上聚集大量位錯,而內部的位錯密度相對低得多。隨著變形量的增大,產生的亞結構也越細。

整個晶粒內部的位錯密度的提高將降低材料的耐腐蝕性。

對力學效能影響

材料在變形後,產生加工硬化,強度、硬度顯著提高,而塑性、韌性明顯下降。加工硬化的工程意義:

1加工硬化是強化材料的重要手段,尤其是對於那些不能用熱處理方法強化的金屬材料。

2加工硬化有利於金屬進行均勻變形。因為金屬已變形部分產生硬化,將使繼續的變形主要在未變形或變形較少的部分發展。

3加工硬化給金屬的繼續變形造成了困難,加速了模具的損耗,在對材料要進行較大變形量的加工中將是不希望的,在金屬的變形和加工過程中常常要進行「中間退火」以消除這種不利影響,因而增加了能耗和成本。

9樓:匿名使用者

冷塑性變形對金屬組織和效能影響

(1)組織的變化

1)晶粒

形狀的變化

金屬經冷加工變形後,其晶粒形狀發生變化,變化趨勢大體與金屬巨集觀變形一致。

2)晶粒內產生亞結構

3)晶粒位向改變(變形織構)

多晶體中原為任意取向的各個晶粒,會逐漸調整其取向而彼此趨於一致。這種由於塑性變形的結果而使晶粒具有擇優取向的組織,稱為 「 變形織構 」 。

(2)效能的變化

其中變化最顯著的是金屬的力學效能,即隨著變形程度的增加,金屬的強度、硬度增加,而塑性韌性降低,這種現象稱為加工硬化。

對於不能用熱處理方法強化的材料,借助冷塑性變形來提高其力學效能就顯得更為重要。最後還要指出,加工硬化對金屬塑性成形也有不利的一面。它使金屬的塑性下降,變形抗力公升高,繼續變形越來越困難,特別是對於高硬化速率金屬的多道次成形更是如此。

以上資訊由鍛件加工、鍛造加工廠家——大冶華威蒐集整理

熱變形:再結晶溫度以上的塑性變形。熱變形時加工硬化與再結晶過程同時存在,而加工硬化又幾乎同時被再結晶消除。

由於熱變形是在高溫下進行的,金屬在加熱過程中表面易產生氧化皮,使精度和表面質量較低。自由鍛、熱模鍛、熱軋、熱擠壓等工藝都屬於熱變形加工。金屬塑性變形對組織和效能的影響 (一)變形程度的影響 塑性變形程度的大小對金屬組織和效能有較大的影響。

變形程度過小,不能起到細化晶粒提高金屬力學效能的目的;變形程度過大,不僅不會使力學效能再增高,還會出現纖維組織,增加金屬的各向異性,當超過金屬允許的變形極限時,將會出現開裂等缺陷。 對不同的塑性成形加工工藝,可用不同的引數表示其變形程度。 鍛造比y鍛:

鍛造加工工藝中,用鍛造比y鍛來表示變形程度的大小。 拔長:y鍛=s0/s(s0、s分別表示拔長前後金屬坯料的橫截面積); 鐓粗:

y鍛=h0/h(h0、h分別表示鐓粗前後金屬坯料的高度)。 碳素結構鋼的鍛造比在2~3範圍選取,合金結構鋼的鍛造比在3~4範圍選取,高合金工具鋼(例如高速鋼)組織中有大塊碳化物,需要較大鍛造比(y鍛=5~12),採用交叉鍛,才能使鋼中的碳化物分散細化。以鋼材為坯料鍛造時,因材料軋製時組織和力學效能已經得到改善,鍛造比一般取1.

1~1.3即可。 表示變形程度的技術引數:

相對彎曲半徑(r/t)、拉深係數(m)、翻邊係數(k)等。擠壓成形時則用擠壓斷面縮減率(εp)等引數表示變形程度。 (二)纖維組織的利用 纖維組織:

在金屬鑄錠組織中的不溶於金屬基體的夾雜物(如fes等),隨金屬晶粒的變形方向被拉長或壓扁呈纖維狀。當金屬再結晶時,被壓碎的晶粒恢復為等軸細晶粒,而夾雜物無再結晶能力,仍然以纖維狀保留下來,形成纖維組織。纖維組織形成後,不能用熱處理方法消除,只能通過鍛造方法使金屬在不同方向變形,才能改變纖維的方向和分布。

纖維組織的存在對金屬的力學效能,特別是衝擊韌度有一定影響,在設計和製造零件時,應注意以下兩點: (1)零件工作時的正應力方向與纖維方向應一致,切應力方向與纖維方向垂直。 (2)纖維的分布與零件的外形輪廓應相符合,而不被切斷。

例如,鍛造齒輪毛坯,應對棒料鐓粗加工,使其纖維呈放射狀,有利於齒輪的受力;曲軸毛坯的鍛造,應採用拔長後彎曲工序,使纖維組織沿曲軸輪廓分布,這樣曲軸工作時不易斷裂

塑性變形對金屬的組織和效能有什麼影響

10樓:湖人總冠軍

塑性變形對組織和結構的影響:

一、形成纖維結構:晶粒在變形方向上拉長或扁平;雜質呈薄帶狀或鏈狀分布。

二、形成變形紋理:

1、變形織構:由塑性變形引起的每一晶粒擇優取向的多晶材料的結構。

2、線(絲)織構:晶向傾向於與變形方向平行(如拉絲時形成)。

3、平面(板)織構:晶面傾向於與軋製面平行,晶向傾向於與主變形方向平行。

4、形成位錯細胞(亞結構)。

11樓:答疑老度

塑性變形對組織和結構的影響:

1,形成纖維組織:晶粒延變形方向被拉長或壓扁;雜質呈細帶狀或鏈狀分布。

2,形成形變織構:

(1)形變織構:  多晶體材料由塑性變形導致的各晶粒呈擇優取向的組織。

(2)線(絲)織構: 某一晶向趨於與變形方向平行 (如拉拔時形成)。

(3)面(板)織構: 某晶面趨於平行於軋製面,某晶向趨於平行於主變形方向。

(4)形成位錯胞(亞結構)。

12樓:拉蘇

1、塑性變形程度的大小對金屬組織和效能有較大的影響。變形程度過小,不能起到細化晶粒提高金屬力學效能的目的;變形程度過大,不僅不會使力學效能再增高,還會出現纖維組織,增加金屬的各向異性,當超過金屬允許的變形極限時,將會出現開裂等缺陷。

2、冷加工的塑性變形,使金屬材料的晶粒內部首先產生滑移帶,隨著變形量的增大,滑移帶逐漸增多。x射線分析表明,此時晶粒逐漸被「碎化」形成許多位向略有不同(位向差不大於1度)的小晶塊,好象在原晶粒內又出現許多小晶粒,這種組織稱為亞晶粒或亞結構。

13樓:艾荔艾金屬材料

(一)變形程度的影響

塑性變形程度的大小對金屬組織和效能有較大的影響。變形程度過小,不能起到細化晶粒提高金屬力學效能的目的;變形程度過大,不僅不會使力學效能再增高,還會出現纖維組織,增加金屬的各向異性,當超過金屬允許的變形極限時,將會出現開裂等缺陷。

對不同的塑性成形加工工藝,可用不同的引數表示其變形程度。

鍛造比y鍛:鍛造加工工藝中,用鍛造比y鍛來表示變形程度的大小。

拔長:y鍛=s0/s(s0、s分別表示拔長前後金屬坯料的橫截面積);

鐓粗:y鍛=h0/h(h0、h分別表示鐓粗前後金屬坯料的高度)。

碳素結構鋼的鍛造比在2~3範圍選取,合金結構鋼的鍛造比在3~4範圍選取,高合金工具鋼(例如高速鋼)組織中有大塊碳化物,需要較大鍛造比(y鍛=5~12),採用交叉鍛,才能使鋼中的碳化物分散細化。以鋼材為坯料鍛造時,因材料軋製時組織和力學效能已經得到改善,鍛造比一般取1.1~1.

3即可。

表示變形程度的技術引數:相對彎曲半徑(r/t)、拉深係數(m)、翻邊係數(k)等。擠壓成形時則用擠壓斷面縮減率(εp)等引數表示變形程度。

(二)纖維組織的利用

纖維組織:在金屬鑄錠組織中的不溶於金屬基體的夾雜物(如fes等),隨金屬晶粒的變形方向被拉長或壓扁呈纖維狀。當金屬再結晶時,被壓碎的晶粒恢復為等軸細晶粒,而夾雜物無再結晶能力,仍然以纖維狀保留下來,形成纖維組織。

纖維組織形成後,不能用熱處理方法消除,只能通過鍛造方法使金屬在不同方向變形,才能改變纖維的方向和分布。

纖維組織的存在對金屬的力學效能,特別是衝擊韌度有一定影響,在設計和製造零件時,應注意以下兩點:

(1)零件工作時的正應力方向與纖維方向應一致,切應力方向與纖維方向垂直。

(2)纖維的分布與零件的外形輪廓應相符合,而不被切斷。

例如,鍛造齒輪毛坯,應對棒料鐓粗加工,使其纖維呈放射狀,有利於齒輪的受力;曲軸毛坯的鍛造,應採用拔長後彎曲工序,使纖維組織沿曲軸輪廓分布,這樣曲軸工作時不易斷裂

(三)冷變形與熱變形

通常將塑性變形分為冷變形和熱變形。

冷變形:再結晶溫度以下的塑性變形。冷變形有加工硬化現象產生,但工件表面***。

熱變形:再結晶溫度以上的塑性變形。熱變形時加工硬化與再結晶過程同時存在,而加工硬化又幾乎同時被再結晶消除。

由於熱變形是在高溫下進行的,金屬在加熱過程中表面易產生氧化皮,使精度和表面質量較低。自由鍛、熱模鍛、熱軋、熱擠壓等工藝都屬於熱變形加工。

冷變形強化對鍛壓加工有何影響如何消除冷變形強化現象

冷變型強化將增加工件的強度,這導致鍛壓加工時加工力變大,嚴重可使鍛壓模具損壞,或工件斷裂等,可通過退火的方式,消除強化現象 可以在常溫下製冷 使使在室溫下改變它原本的屬性 或者添某種物質是原本的效能性質改變 但是所添的物質要保證在不改變物體本身的效能 引數,化學跟物理量 當心核變,祝願你成功 冷變形...

金鑲玉上面的金燒變形是假的麼,金鑲玉的金子磨掉了裡面有塑料是假的嗎

作為一種 有良好的物理特性,真金不怕火煉 就是指一般火焰下 不容易熔化。硬度2 3,純金19.3,熔點1064.4 具良好的延展性,能壓成薄箔,具極高的傳熱性和導電性,純金的電阻為2.4p。純金具有良好的抗化學腐蝕性,是最好的電鍍材料。而且當金被熔化時發出的蒸汽是綠色的 冶煉過程中它的金粉通常是啡色...

大家對強化地板品牌了解過多少?哪個更好?

我之前進行過對比,希望對你有幫助。強化地板哪個牌子 些?20 強化復合木地板哪個牌子 點?購買強化地板需要關注幾個指標,需要關注基材產地 最好的是大亞的基材 環保等級 一般強化複合地板的甲醛標準有e1和是甲醛釋放量 1.5毫克每公升,e0是甲醛釋放量 毫克每公升,國家標準裡e1就對人體無害了 地板厚...