求兩個博弈論的例子,請列舉幾個用博弈論在實際生活中分析問題的例子。

2021-03-04 01:45:37 字數 4867 閱讀 2011

1樓:匿名使用者

這個例子講的是:豬圈裡有兩頭豬,

一頭大豬,一頭小豬。豬圈的一邊有個踏板,每踩一下踏板,在遠離踏板的豬圈的另一邊的投食口就會落下少量的食物。如果有乙隻豬去踩踏板,另乙隻豬就有機會搶先吃到另一邊落下的食物。

當小豬踩動踏板時,大豬會在小豬跑到食槽之前剛好吃光所有的食物;若是大豬踩動了踏板,則還有機會在小豬吃完落下的食物之前跑到食槽,爭吃到另一半殘羹。

那麼,兩隻豬各會採取什麼策略?答案是:小豬將選擇「搭便車」策略,也就是舒舒服服地等在食槽邊;而大豬則為一點殘羹不知疲倦地奔忙於踏板和食槽之間。

原因何在?因為,小豬踩踏板將一無所獲,不踩踏板反而能吃上食物。對小豬而言,無論大豬是否踩動踏板,不踩踏板總是好的選擇。

反觀大豬,已明知小豬是不會去踩動踏板的,自己親自去踩踏板總比不踩強吧,所以只好親力親為了。

「小豬躺著大豬跑」的現象是由於故事中的遊戲規則所導致的。規則的核心指標是:每次落下的事物數量和踏板與投食口之間的距離。

如果改變一下核心指標,豬圈裡還會出現同樣的「小豬躺著大豬跑」的景象嗎?試試看。

改變方案一:減量方案。投食僅原來的一半分量。

結果是小豬大豬都不去踩踏板了。小豬去踩,大豬將會把食物吃完;大豬去踩,小豬將也會把食物吃完。誰去踩踏板,就意味著為對方貢獻食物,所以誰也不會有踩踏板的動力了。

如果目的是想讓豬們去多踩踏板,這個遊戲規則的設計顯然是失敗的。

改變方案二:增量方案。投食為原來的一倍分量。

結果是小豬、大豬都會去踩踏板。誰想吃,誰就會去踩踏板。反正對方不會一次把食物吃完。

小豬和大豬相當於生活在物質相對豐富的「共產主義」社會,所以競爭意識卻不會很強。

對於遊戲規則的設計者來說,這個規則的成本相當高(每次提供雙份的食物);而且因為競爭不強烈,想讓豬們去多踩踏板的效果並不好。

改變方案三:減量加移位方案。投食僅原來的一半分量,但同時將投食口移到踏板附近。

結果呢,小豬和大豬都在拼命地搶著踩踏板。等待者不得食,而多勞者多得。每次的收穫剛好消費完。

對於遊戲設計者,這是乙個最好的方案。成本不高,但收穫最大。

原版的「智豬博弈」故事給了競爭中的弱者(小豬)以等待為最佳策略的啟發。但是對於社會而言,因為小豬未能參與競爭,小豬搭便車時的社會資源配置的並不是最佳狀態。為使資源最有效配置,規則的設計者是不願看見有人搭便車的,**如此,公司的老闆也是如此。

而能否完全杜絕「搭便車」現象,就要看遊戲規則的核心指標設定是否合適了。

比如,公司的激勵制度設計,獎勵力度太大,又是持股,又是期權,公司職員個個都成了百萬富翁,成本高不說,員工的積極性並不一定很高。這相當於「智豬博弈」

增量方案所描述的情形。但是如果獎勵力度不大,而且見者有份(不勞動的「小豬」也有),一度十分努力的大豬也不會有動力了----就象「智豬博弈」減量方案一所描述的情形。最好的激勵機制設計就象改變方案三----減量加移位的辦法,獎勵並非人人有份,而是直接針對個人(如業務按比例提成),既節約了成本(對公司而言),又消除了「搭便車」現象,能實現有效的激勵。

許多人並未讀過「智豬博弈」的故事,但是卻在自覺地使用小豬的策略。**上等待莊家抬轎的**;等待產業市場中出現具有贏利能力新產品、繼而大舉仿製牟取暴利的游資;公司裡不創造效益但分享成果的人,等等。因此,對於制訂各種經濟管理的遊戲規則的人,必須深諳「智豬博弈」指標改變的個中道理。

請列舉幾個用「博弈論」在實際生活中分析問題的例子。

2樓:王王王小六

1、智豬博弈

假設豬圈裡有一頭大豬、一頭小豬。

豬圈的一頭有豬食槽(兩豬均在食槽端),另一頭安裝著控制豬食**的按鈕,按一下按鈕會有10個單位的豬食進槽,但是在去往食槽的路上會有兩個單位豬食的體能消耗,若大豬先到槽邊,大小豬吃到食物的收益比是6:4;同時行動(去按按鈕),收益比是7∶3;小豬先到槽邊,收益比是9:1。

那麼,在兩頭豬都有智慧型的前提下,最終結果是小豬選擇等待。

"智豬博弈"由納什於2023年提出。

實際上小豬選擇等待,讓大豬去按控制按鈕,而自己選擇「坐船」(或稱為搭便車)的原因很簡單:在大豬選擇行動的前提下,小豬選擇等待的話,小豬可得到4個單位的純收益,而小豬行動的話,則僅僅可以獲得大豬吃剩的1個單位的純收益,所以等待優於行動。

在大豬選擇等待的前提下,小豬如果行動的話,小豬的收入將不抵成本,純收益為-1單位,如果小豬也選擇等待的話,那麼小豬的收益為零,成本也為零,總之,等待還是要優於行動。

當大豬選擇行動的時候,小豬如果行動,其收益是1,而小豬等待的話,收益是4,所以小豬選擇等待;當大豬選擇等待的時候,小豬如果行動的話,其收益是-1,而小豬等待的話,收益是0,所以小豬也選擇等待。

綜合來看,無論大豬是選擇行動還是等待,小豬的選擇都將是等待,即等待是小豬的佔優策略。

2、協同攻擊難題

兩個將軍各帶領自己的部隊埋伏在相距一定距離的兩個山上,等候敵人。將軍a得到可靠情報說,敵人剛剛到達,立足未穩。如果敵人沒有防備,兩股部隊一起進攻的話,就能夠獲得勝利;而如果只有一方進攻的話,進攻方將失敗。

這是兩位將軍都知道的。

a遇到了乙個難題:如何與將軍b協同進攻?那時沒有**之類的通訊工具,只有通過派情報員來傳遞訊息。

將軍a派遣乙個情報員去了將軍b那裡,告訴將軍b:敵人沒有防備,兩軍於黎明一起進攻。

然而可能發生的情況是,情報員失蹤或者被敵人抓獲。即:將軍a雖然派遣情報員向將軍b傳達「黎明一起進攻」的資訊,但他不能確定將軍b是否收到他的資訊。

事實上,情報員回來了。將軍a又陷入了迷茫:將軍b怎麼知道情報員肯定回來了?

將軍b如果不能肯定情報員回來的話,他必定不會貿然進攻的。於是將軍a又將該情報員派遣到b地。然而,他不能保證這次情報員肯定到了將軍b那裡……

這就是「協同攻擊難題」,它是由格萊斯(j. gray)於2023年提出。更為糟糕的是,有學者證明,不論這個情報員來回成功地跑多少次,都不能使兩個將軍一起進攻。

擴充套件資料

2023年,馮·諾依曼證明了博弈論的基本原理,從而宣告了博弈論的正式誕生。2023年,馮·諾依曼和摩根斯坦共著的劃時代巨著《博弈論與經濟行為》將二人博弈推廣到n人博弈結構並將博弈論系統地應用於經濟領域,從而奠定了這一學科的基礎和理論體系。

1950~2023年,約翰·富比士·納什利用不動點定理證明了均衡點的存在,為博弈論的一般化奠定了堅實的基礎。納什的開創性**《n人博弈的均衡點》(1950),《非合作博弈》(1951)等等,給出了納什均衡的概念和均衡存在定理。

此外,萊因哈德·澤爾騰、約翰·海薩尼的研究也對博弈論發展起到推動作用。今天博弈論已發展成一門較完善的學科。在金融學、**學、生物學、經濟學、國際關係、電腦科學、政治學、軍事戰略和其他很多學科都有廣泛的應用。

3樓:巴黎圍牆巍峨

日常生活中的一切,均可從博弈得到解釋,大到**戰,小到今天早上你突然生病。可能你會認為,**爭端用博弈論來分析是可以的,但對自己生病也可以用博弈論來理解就有點不可思議,因為自己就乙個人,和誰進行遊戲?

實際上,並非只有乙個人,還有乙個叫做「自然」(nature)的參與者。「自然」可以理解為無所不能的上帝,上帝現在有兩種策略,讓人生病或不生病。人一旦生病,就不得不根據生病的資訊判斷上帝的策略,然後採取對應的策略。

上帝採取讓人生病的策略,人就採取吃藥的策略來對付;上帝採取不讓人生病的策略,人就採取不予理睬的策略。這正是一場人和上帝進行博弈的遊戲。

「自然」是研究單人博弈的重要假定。再比如乙個農夫種莊稼也是同自然進行博弈的乙個過程。自然的策略可以是:

天旱、多雨、風調雨順。農夫對應的策略分別是:防旱、防澇、放心地休息。

當然,「自然」究竟採用哪種策略並不確定,於是農夫只有根據經驗判斷或氣象預報來確定自己的行動。如果估計今年的旱情較重,就可早做防旱準備;如果估計水情嚴重,就早做防澇準備;如果估計是風調雨順,農夫就可以悠哉游哉了。

生活中更多的遊戲不是單人博弈,而是雙人或多人的博弈。比如,某一天你覺得應該是你太太的生日,但又不能肯定:如果是太太的生日的話,你可以送一束花,太太會特別高興;你不送花,太太會埋怨你忘了她的生日;如果不是太太的生日的話,你可以送太太一束花,太太感到意外的驚喜;你不送花,結果生活同往常一樣。

在這個博弈裡,我們看到,「自然」可以有兩種策略:確定今天是太太的生日或確定今天不是太太的生日,但不論「自然」採取何種策略,你的最好行動都是買花。

夫妻吵架也是一場博弈。夫妻雙方都有兩種策略,強硬或軟弱。博弈的可能結果有四種組合:夫強硬妻強硬、夫強硬妻軟弱、夫軟弱妻強硬、夫軟弱妻軟弱。

根據生活的實際觀察,夫軟弱妻軟弱是婚姻最穩定的一種,因為互相都不願讓對方受到傷害或感到難過,常常情願自己讓步。動物學的研究有相同的結論,性格溫順的雄鳥和雌鳥更能和睦相處,壽命也更長。

夫強硬妻強硬是婚姻最不穩定的一種,大多數結局是負氣離婚。夫強硬妻軟弱和妻強硬夫軟弱是最常見的一種,許多夫妻吵架都是這樣,最後終歸是一方讓步,不是丈夫撤退到院子裡點根菸,就是妻子避讓到臥室裡號啕大哭。

在競爭激烈的商業界,博弈更為常見。比如兩個空調廠家之間的**戰,雙方都要判斷對方是否降價來決定自己是否降價,顯而易見,廠家之間的博弈目標就是盡可能獲得最大的市場份額,賺取最多的收益。

4樓:匿名使用者

博弈論在實際生活中運用的很廣泛,分別是很多方面不一定是哪個方面?

5樓:匿名使用者

從理論上講,博弈論是研究的形式理性的行動者相互

作用的理論,而實際上是深入到經濟學,政治學,社會學等,應用社會科學。

博弈論來分析依賴於數學模型可作為乙個數學問題。

經濟學中,「智豬博弈」(pigs'payoffs)是乙個著名的博弈論的例子

這個例子是:乙個穀倉豬,豬,豬。豬圈裡側踏板,每踩一下踏板將下降乙個小口的另一邊遠離踏板的豬圈裡餵養的食物量。

如果乙隻豬去踩踏板,另乙隻豬就有機會搶先吃對方的下降的糧食。當豬踩動踏板時,大豬小豬去馬槽前剛吃的所有食物,大豬踏板的踏板,然後下降的糧食吃豬前有機會跑到食槽,爭吃的另一半剩飯剩菜。

所以,兩隻豬各會採取什麼樣的策略呢?答案是:小豬將選擇「搭便車」策略,也就是舒適,等待在食槽邊,大豬小剩菜不知疲倦地奔忙於踏板和食槽之間。

這兩個東西,幹嘛用的,求具體,

乙個是手剎。手剎的專業稱呼是輔助制動器,與制動器的原理不同,其是採用鋼絲拉線連線到後制動蹄上,以對車子進行制動。長期使用手剎會使鋼絲產生塑性變形,由於這種變形是不可恢復的,所以長期使用會降低效用,手剎的行程也會增加。用途 1.停車後掛上空擋,然後要拉起手剎,可以將汽車固定住,如果不拉手剎,是可以推動...

請舉兩個損害未成年人個人隱私權的例子

家長看孩子的日記。手機號碼。網上的郵箱。翻孩子的書包。等等吧。以我個人來看 這是損害孩子的隱私權。學校 幼兒園的教職員應當尊重未成年人的人格尊嚴,不得對未成年學生和兒童實施體罰 變相體罰或者其他侮 1 肖像權 榮譽權 名譽權 姓名權 隱私權。2 舉例言之有理即可。3 舉例言之有理即可。未成年人的隱私...

求幾個古風的遊戲名字男女兩個不要太俗不要非主流

樓主好,因為不知道你到要幾個字的,還是如何,你自己挑吧,男女都可以用的 畫扇悲風殤月夜 盛唐遺風斷空夢。丶奈何亦是淚 雲想衣裳花想容丶 錦繡芙蓉夜微瀾 舞姬嬌腮嘆流光 不解風情落花繞身旁 分影念若錦繡華 流光飛舞不夜天 回首闌珊三聲嘆 關外野店煙火絕 杯中景色詭魅 舉杯消愁意正濃 紅顏彈指老 紅塵煙...